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FINITE-ELEMENT SOLUTION PROCEDURES
FOR SOLVING THE INCOMPRESSIBLE,
NAVIER-STOKES EQUATIONS USING EQUAL
ORDER VARIABLE INTERPOLATION

G. E. Schneider, G. D. Raithby, and M. M. Yovanovich
Thermal Engineering Group, Department of Mechanical Engineering,
University of Waterloo, Waterloo, Ontario, Canada N2L 3Gl

The conventional finite-element formulation of the equations of motion (written in
pressure-velocity variables) requires that the order of interpolation for pressure be
one less than that wused for the velocity components. This constraint is
inconvenient and can be argued to be physically inconsistent when inertial effects
are dominant. The origins of the constraint are discussed and three new
finite-element formulations are advanced that permit equal order representation of
pressure and velocity. Of these, the velocity correction scheme, similar to thar
commonly used in finite-difference procedures, offers superior performance for the
examples examined in this paper.

INTRODUCTION

The equations governing the steady, viscous flow of an incompressible Stokesian
fluid can be written in alternative forms having, respectively, stream function and
vorticity, and velocity and pressure (primitive variables), as the dependent variables
[1]. The primitive variable formulation (Navier-Stokes equations) consists in two
dimensions of the two momentum equations and a zero-velocity-divergence constraint
representing mass conservation. When a straightforward finite-element solution is
attempted for these problems, a singular matrix is frequently encountered [2]. The
standard procedure for avoiding this problem is to reduce the order of the pressure
interpolation to one less than that used for the velocity components [3]. Although
this is mathematically expedient, the effect of this reduction on solution accuracy has
not been clearly established. It has been argued [4] that the reduced order for pressure
is, in fact, consistent with the equations of motion, but these arguments are based on a
linearization of the acceleration terms in the momentum equations. For the complete
nonlinear problem, it would seem that reduced order pressure would be adequate only
if viscous effects dominate, but if significant inertial influences are present the pressure
field should be interpolated to an equal or even higher order than the velocity.

Several approaches to overcoming the mathematical requirement for reduced
order pressure are examined in this paper. These include approaches that employ the
Navier-Stokes equations directly and approaches that invoke the incompressibility
constraint through the use of a derived equation. Attention is restricted, however, to
methods involving the primitive (velocity and pressure) variables explicitly.
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NOMENCLATURE
A coefficient matrix [see Eq. r dimensions of component
(9] matrices [see Eq. (6)]
b forcing vector [see Eq. (9)] Re Reynolds number (= LUp/v)
Cp specific heat at constant s dimensions of component
pressure matrices [see Eq. (6))
D velocity divergence (= du;/ H time
ax;) T temperature
f“f.ﬂ’,fT forcing vectors for u; momen- i velocity component in the x;
tum, continuity, and energy, direction
respectively up sliding plate velocity (see
& component of gravity in the Fig. 7)
x; direction (x, ¥} coordinate directions, used
k thermal conductivity interchangeably with (x,,x,)
kM |PYi, |, coefficients of stiffness xi coordinate direction,i= 1, 2
matrix [see Eq. (5)] v? Laplacian, in two dimensions
L length scale (see Figs. 3and 7) u dynamic viscosity
m matrix dimensions [see Eq. o fluid density
(M) ® velocity-correction potential
n matrix dimensions [see Eq. [see Eq. (18)]
(N A eigenvalue [see Eq. (10)]
N shape functions [see Eq. (9)] ¢ isobaric compressibility
P pressure 5 artificial compressibility
Pr Prandtl number [see Eq. (24)] » kinematic viscosity
Ra Rayleigh number [see Eq. (25)] « thermal diffusivity

An artificial compressibility method, employing the Navier-Stokes equations
directly, is examined with respect to its potential for surmounting the pressure
interpolation problem. Results presented for this method support the eigenvalue
analysis reported in [5].

The use of the pressure Poisson equation as a mechanism for invoking the
incompressibility constraint is also investigated in this work. The pressure Poisson
equation is a derived equation for pressure (obtained from the momentum equations)
that replaces the zero-divergence continuity constraint. Previous attempts to use this
equation in a prediction scheme have met with failure [6] and partial success [5].
Additional experience with this method is gained in this work.

The relatively poor performance of the pressure Poisson methods as previously
applied [5, 6] has led us to reexamine this equation with respect to its predictive
capabilities in a computational method. The details of this reexamination of the
pressure Poisson equation are reported in [7]. In that paper a partial explanation was
provided for the relatively poor performance of the method and a new method based
on the pressure Poisson equation was proposed. The proposed method provides a
significant improvement over the previous methods involving the pressure Poisson
equation, but computationally undesirable features remain and are thought to result
from the indirect manner in which the incompressibility constraint is enforced.

Finally, an altemative method is presented to the finite-element community
having as its basis the stringent satisfaction of continuity at every stage of the iterative
approach toward a converged solution. This method, the velocity correction procedure,
is modeled after a method employed by finite-difference researchers [8] and, of the
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methods examined in this paper, it is felt to provide the most promise where equality
of representation of the velocity and pressure fields is demanded of the procedure.
Experience with this method indicates that an order of magnitude reduction in
computational cost can be achieved over other methods that will permit the above

equality of representation.
These methods are applied to three example problems to assist in evaluating the
relative potential of the methods for surmounting the reduced order pressure

interpolation requirement.

OUTLINE OF FINITE-ELEMENT FORMULATION

Consider the two-dimensional flow of a Stokesian fluid having constant
properties. The governing differential equations are given by [9]

ou; u; apP

Par ﬂ“fa_%i*"a—h"‘ﬂvzﬂr*pgi Li=1,2 (1)
and
du
o = O @

where u; denotes the velocity component in the x; direction, g is the fluid density, P is
pressure, g; is the component of gravitational acceleration in the x; direction, and V?
is the Laplacian operator in two dimensions. The equation for conservation of thermal
energy, neglecting compression work and viscous dissipation, is given by

aT aT s
pCp g * PCot 5 = KV°T 3)

where T is temperature, C’p is the fluid specific heat, and k is the fluid thermal
conductivity. Equations (1)-(3) represent four equations in the four unknowns, u,, u,,
P, and T. A method of solution of this set of equations is sought.

In the finite-element method, the unknown velocity, pressure, and temperature
fields are expressed in terms of interpolation formulas over each element of the
subdivided domain. This is readily accomplished through the use of shape functions N
[10], and the approximate solution fields then take the form

up= (N T {uy, )
P= (NP} (pi} )

T= Ny Ty}
By adopting the Galerkin method of error distribution, the residuals obtained
through substitution of Egs. (4) into the governing differential equations (1)-(3) are

weighted using the shape functions for the velocity components, pressure, and
temperature, respectively, and the volume-integrated result is set to zero. Equations (1)
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and (3) are nonlinear and a suitable linearization is therefore required. The
linearization utilized herein consists of approximating the “convecting” velocities of
Egs. (1) and (3) by suitable guess distributions. Details regarding the linearization
procedure can be found in [3] and [11]. By employing backward differences in time,
the finite-element equations can be written in matrix form as

k) o o) o |[wi] o]

0 [K*2¥2]  [K*2P] 0 {uz} {re} (5)
[KP] (kP 0 0 {r} {7}
| 0 0 o KT LM U™

Details regarding the evaluation of the component entries in this system of equations
can be found in [11].

THE PRESSURE INTERPOLATION PROBLEM

The pressure interpolation problem arises when the set of algebraic equations
represented in Eq. (5) is modified to incorporate boundary conditions. This will be
demonstrated by asserting Dirichlet conditions on the momentum-continuity subset of
equations.

The equation formed by weighting one of the momentum equations by the kth
shape function for velocity can be considered to be an equation expressing momentum
conservation in this direction in the vicinity of the kth velocity node of the discrete
system. The equation formed by weighting the continuity equation by the kth shape
function for pressure can be considered to be an equation expressing the conservation
of mass (for incompressible fluids the compression work done by the pressure field
must be zero) in the vicinity of the kth pressure node. With this view, the momentum
equations are considered as equations for the nodal velocity components and the
continuity equations are considered as equations for the nodal pressures.

The procedure for invoking specified velocity boundary values is to delete (or
not form) the appropriate equation describing momentum conservation in favor of the
boundary velocity value specification. For specified pressures the appropriate con-
tinuity equation is deleted in favor of the boundary pressure specification. Support for
this procedure of boundary condition specification is provided in [2, 3, 11, 12]. The
impact that adoption of the above procedure has on the pressure interpolation problem
will now be discussed.

The number of nodal velocities and pressures required is determined in direct
relation to the interpolation order used to define the approximate velocity and
pressure fields, respectively. In what follows it will be assumed that the compatibility
and completeness requirements of the shape functions have been met and moreover, to
maintain geometric isotropy, that the shape functions used for the two velocity
components are equal.

By letting r denote the number of velocity nodes and s the number of pressure
nodes, the matrix equation (5) can be written for the present problem, prior to
boundary condition application, as
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(K5 ] 0 (K*1P] s | | {1} U}
0 (K" )y [K¥3P) s | |2} | = | 2} (6)
[KPH ] s [KPHa ]w 0 {r} 0

Further, by denoting the number of velocity-specified nodes by e and the number of
pressure-specified nodes by f, the number of velocity equations requiring solution will
be m=r—e for each component, and the number of continuity (pressure) equations
requiring solution will be n =s — f. The resulting system of matrix equations requiring
solution can then be written as

[Kulullmxm 0 [Kalp]mxu {uy } (i}
0 K2 ) pxm  [K“P] g | | (2} | = | ) (7
[KP"' ] om [KP2] pm 0 {r} 0

In order that the overall system admit a solution, the conditions must be met that

m+nz=2m (x momentum) (8a)
m+nz=zm (y momentum) (8b)
2m>n  (continuity) (8¢)

It is from the above conditions that the shape function restriction for pressure
interpolation can be seen. While satisfaction of the first two criteria is trivial, violation
of the third is clearly possible. This is particularly true if the velocity and pressure
shape functions are of the same polynomial degree.

In the report by Tuann and Olson [13] an alternative viewpoint is presented on
the pressure interpolation problem, which also hinges on the application of boundary
conditions. Writing Eq. (6) in the form

[A] {x} = {b} ©9)
they recognized that the solutions to the eigenvalue problem defined by
[[4] —A[/]] &x} = {0} (10)

and for which the eigenvalues are zero, constitute solutions to the homogeneous form
of Eq. (9). The associated modal vectors must therefore be suppressed or accepted
through the application of boundary conditions. It was shown that if insufficient
pressure information was given, spurious pressure solutions would persist in the
solution field. A sufficiently stringent specification of the pressure boundary values
may not be possible, however, with the boundary data available for a given problem.
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ARTIFICIAL COMPRESSIBILITY SCHEME

The difficulty encountered above is a result of pressure failing to appear
explicitly in the continuity equation, and this, in turn, is a result of the assumed
independence of the density on the pressure field for incompressible fluids.

By restricting attention to steady flows, the problem could be avoided if an
equation of state were employed that related density to pressure such that the
continuity equation would explicitly contain pressure. In the artificial compressibility
scheme, an artificial density is introduced that exhibits this dependence on pressure.
This artificial density is introduced only in the continuity equation and is structured
such that the steady solution will be unaffected. These ideas will be clarified in the
following discussion.

A computational method based on these ideas was originally proposed by Chorin
[14] for use in finite-difference computation. In this method the artificial equation of
state relating the fictitious density p* to pressure is

p* =P (1)

where & is an artificial compressibility. Further, the fictitious density is introduced
only in the temporal term of the continuity equation. The continuity equation is then
written as

u
X

-

$=—+ =0 (12)

&I
Q

o
-

in which the pressure now appears explicitly.

Use of the above equation admits a physical interpretation of the computational
process in which the velocity divergence is driven to zero as steady state is approached
and temporal variations vanish. The mechanism is to provide a pressure increase
(decrease) in regions of local negative (positive) divergence. Thus, mass sources tend to
be annihilated through the local pressure decrease, which acts through the momentum
equations to drive less mass out of these regions.

A finite-element representation of Eq. (12) can be readily derived by employing
standard methods and will not be presented here. Instead, attention is directed to the
application of the method to the example of pressure-driven flow between stationary
plates. The problem geometry and boundary conditions are illustrated in Fig. 1. On the
two horizontal boundaries a zero-slip condition is applied. Further, since the procedure
follows a transient-like development, a pressure datum is not supplied, but the pressure
is left to seek its own level starting from an initial field of zero. The flow Reynolds
number based on plate spacing was of order unity. Isoparametric, quadratic,
quadrilateral elements were used in the finite-element discretization (equal order for
velocity and pressure).

Two possible procedures can be adopted for application of the method: a
simultaneous solution of the momentum and continuity equations, or an iterative
approach that involves alternately solving the momentum equations for the velocity
components and the continuity equation for pressure. Because of the corrective nature
of the procedure as described above, the simultaneous solution approach proved
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Fig. 1 Problem geometry used for Couette flow example.

unsuccessful in providing convergent solutions, although a singular matrix (i.e., the
“pressure interpolation problem™) was never encountered. Thus, the objective of
overcoming the singular matrix problem has been achieved.

Adopting the iterative approach to the artificial compressibility scheme permitted
convergent solutions to this problem to be obtained. A dimensionless time step of
v At/L* = 50, where v is the kinematic viscosity, Az the time interval, and L the plate
spacing, was found to provide stable solutions over a wide range of the artificial
compressibility. A near-optimal value of the compressibility was found to be 6 = 1.5
for the Reynolds number under consideration.

With the pressure interpolation problem surmounted, attention is now directed to
solution accuracy. It was observed that the velocity field agreement with the exact
solution for this problem was excellent. However, the pressure field exhibited quadratic
“bumps” in both dimensions of the computational domain, although the average
overall pressure drop was approximately correct. This result is indeed disturbing, that
such an unusual pressure field is actually compatible with the finite-element
representation of the equations of motion.

Despite the inaccurate prediction of the pressure field as indicated above, the
artificial compressibility study has served a very useful purpose. The above results
provide quantitative substantiation of the eigenvalue analysis predictions of Tuann and
Olson [13]. In their analysis, they predicted that where quadratic interpolation for
velocity and pressure is used, quadratic spurious solutions in the pressure field could
persist in the numerical predictions. Our experience completely confirms these
predictions.

Because of the inability of the method to provide accurate pressure solutions, in
addition to several other detrimental features of the method as detailed in Schneider
[11], the artificial compressibility scheme is discarded as a viable means for the
finite-element prediction of incompressible fluid flows where equality of the velocity
and pressure interpolation is demanded of the solution.

PRESSURE POISSON FORMULATION

An alternate approach to overcoming the pressure interpolation problem by
utilizing the pressure Poisson equation is discussed in [7]. This offers the potential for
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overcoming the problems associated with the weak coupling between the pressure and
velocity fields by placing pressure in a more dominant role. The equation is derived by
taking the divergence of the vector momentum equation and is given by

Oty Quy Olp duy D? aD aD 9(og;)
2p o 9o | OML OUz _ OU Oy DF I, LA
v P‘Z"[ax, S Oy B5s 2]+ 3"“7 D=y 5 ™ P ot %J' 2%, (1Y
where
_ Oy 4
D_ax,.« (l }

is the velocity field divergence and p is the dynamic viscosity. Invoking the
incompressible continuity equation that D=0 everywhere in the solution domain
results in the simplified pressure Poisson equation

ou,y ou Ju, ou 9(pg;)
2p | B Qs Buy Buy | | B(rg))
VE=2p [ax, ax, 9% ax,] ax; (1%)

As discussed in [7], the mathematical problem then becomes that of solving the
two momentum equations in harmony with Eq. (15).

A finite-element representation can be readily derived for the above Poisson
equations and will not be presented here. It is noted, however, that boundary
conditions are required for the pressure and that the appropriate conditions are those
of self-consistency. That is, pressure gradients at the boundary are made consistent
with those obtained from the momentum equations. A datum for pressure is also
required if there are no pressure-specified boundaries in the problem.

Decisions must be made at this point regarding the mode of application of this
formulation. Previous efforts [6, 13] in this direction have employed approaches that
are completely iterative in their nature, the momentum and pressure Poisson equations
being solved successively in sequence. We solved these equations simultaneously
for velocity and pressure with the coupling of the pressure Poisson equation to the
momentum equations provided through the boundary self-consistency conditions.

The procedure described above was applied to the Couette flow problem
illustrated in Fig. 1 for the boundary conditions indicated in that figure as well as for
several other boundary condition combinations consistent with the well-posed
Navier-Stokes problem. It was concluded, on the basis of this experience, that the
formulation performed very well for this example. Solutions were obtained with equal
order pressure and velocity interpolation, and these solutions were free from the
undesirable features of the artificial compressibility solutions. A second, more
demanding problem is now examined.

The second example considered is that of free convection flow within a square
enclosure. The geometry and boundary conditions are indicated in Fig. 2. A Boussinesq
approximation is made, that density variations are considered only where they appear
in the momentum equations as driving forces. The no-slip condition is applied at all
boundaries, and a reference pressure of zero is assumed at the midcavity node. The
flow field is characterized by the Prandtl and Rayleigh numbers (Eckert and Drake
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Fig. 2 Problem geometry used for free convection
example.

[15]), Pr and Ra, where Pr=0.73 for air was used in all computations. Quadratic,
isoparametric, quadrilateral finite elements were again used for all variables.

Initial experiments with Ra =0 verified the no-flow situation; the Rayleigh
number was then increased. The initial velocity and pressure fields were zero with the
temperature linearly varying from the hot surface to the cold surface. For a Rayleigh
number of 250, a relatively slow recirculation situation, a converged solution was
achieved in 5 Picard iterations, convergence corresponding to a maximum change in
any variable of less than 0.1% between successive iterations, With an advanced Rayleigh
number of 1000, a converged solution was also obtained but significantly more
iterations were required. For the further increased Rayleigh number of 10,000, a
converged solution could not be obtained within practical computing times despite
many attempts.

The failure to vield a solution to this problem provided the incentive to
undertake a separate investigation of the pressure Poisson formulation [7]. The reasons
why poor performance can be expected from this formulation and the reasons for the
failure in this problem are discussed in detail in [7]. A similar formulation, but with
much improved convergence characteristics, was also presented, which permitted a
solution to the natural convection problem to be obtained for a Rayleigh number of
10,000. Although this success supported the arguments for the failure of the pressure
Poisson formulation, the procedure was not extensively tested because of the even
better performance of the formulation described in the following section.

THE VELOCITY CORRECTION PROCEDURE

The experience mentioned above and that of finite-difference researchers suggest
that conservation of mass is of paramount importance in computing fluid flows. The
velocity correction procedure is based on the ideas of Chorin [16], Amsden and
Harlow [17], and Patankar [18], and provides a more direct enforcement of mass
conservation than the previously discussed method. The velocity correction procedure
is now described.
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A tentative velocity field uf and u¥ is obtained from the momentum equations
under the influence of a guessed pressure field p*. These velocities will not, in general,
satisfy mass conservation, and corrections are introduced in the usual form

w=uf+u i=1,2 (16)

The continuity equation can then be written solely in terms of the velocity correction
field as

—L=_p* (17)

In recognition that the pressure field cannot alter the vorticity of the flow, the
correction field will be obtained in such a way that (1) it leaves the vorticity of the uf
field unchanged, and (2) the incompressibility constraint, Eq. (17), will be satisfied.
These requirements can be fulfilled if the velocity correction is defined to be the
gradient of a suitable potential function ¢. Thus the definition is made that

,_ 0 .
u;Ea—i i=1,2 (18)
With this definition, Eq. (17) becomes
Vig=—D* (19)

The solution of this equation will permit the velocity correction field to be determined
that, when added to the u* field, will produce a velocity field satisfying conservation
of mass exactly. (Conservation of momentum, however, will not be satisfied by the
resultant field.) The final step of the iterative cycle consists of obtaining a more
realistic estimate of the pressure distribution than that used at the beginning of the
cycle. This is done using the pressure Poisson equation in the form of Eq. (15).

The velocity correction procedure is not as directly implemented as the
description above might suggest. The problem arises in providing realistic boundary
conditions for the uf field, for these are not known a priori. The true physical
boundary conditions can be applied to the ujf field with the view that, as the
correction potential ¢ vanishes, the steady solution will be unaffected, or a more
elaborate procedure as discussed in Schneider et al. [7] can be adopted. Fortunately,
the former approach appears to provide satisfactory convergence characteristics based
on experience with the problems on which it has been applied to date.

The velocity correction procedure was applied to the free convection problem
and extremely rapid convergence, relative to that realized using the previous methods,
was observed. Relatively large time steps were permissible even for the case where
Ra = 10,000. The solutions were obtained using isoparametric, quadratic, quadrilateral
elements for both the pressure and velocity fields. The success of the method, as
further evidenced by the applications discussed below, is attributed to the strong,
direct enforcement of the incompressibility constraint. Convergence rates an order of
magnitude faster than those of the best pressure Poisson formulation were observed.
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PREDICTIONS FROM THE VELOCITY
CORRECTION PROCEDURE

The velocity correction procedure has been applied to two problems in order to
obtain a preliminary evaluation of the impact that equality of representation of the
velocity and pressure fields has on the computed results. These applications are now
discussed.

Free Convection in an Enclosed Cavity

The first problem is similar to the free convection example already considered
with the exception that the horizontal sidewalls are assigned a linear temperature
distribution corresponding to infinitely conducting sidewalls. The problem geometry
and boundary conditions are illustrated in Fig. 3.

The differential equations governing the flow in the cavity are

duf |, ouf op* o 8w
ar*+u;-a—xf;,— 3):,-*+Prv u,—+RaPrgT (20)
duf
w =0 (21)
and
AT . LT
o T ‘5;}; =V*T (22)

where the nondimensional variables are defined by

X Uy
xf==— uf=-—
i i i A
arl
it B @)
1 Th‘—T
T*=>—
2 Th_Tc

with uy = /L, where « is the thermal diffusivity, and T} and T, are the hot and cold
boundary temperatures, respectively. The Prandtl and Rayleigh numbers are defined,
respectively, by

—
Pr= -E (24)
and
- 3
fm DAL TONE (25)
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Fig. 3 Problem geometry used for free convection example.

where f, is the isobaric compressibility and g is the gravitational acceleration.
Boundary conditions are self-evident from the text description and will not be
displayed in their mathematical form. Boundary conditions for the pressure Poisson
equation are the self-consistency conditions described earlier.

A solution was obtained to the above problem for a Rayleigh number of
100,000. A Prandtl number of 0.73 was used, corresponding to air at approximately
standard temperature and pressure conditions. Although computational expediency can
be realized through the use of nonuniform meshes, a uniform subdivision was used for
the demonstrative purposes intended of the examples. Quadratic, isoparametric
quadrilateral finite elements were used.

Velocity profiles computed for the Ra= 100,000 problem are presented in Fig.
4, using a mesh of 8 elements by 8 elements. It is noted that in the reentrant corners
(lower right and upper left), a discontinuity in the vertical velocity component gradient
is incurred. This was not observed for the Ra= 10,000 problem (at the same
discretization level) and is attributed to the boundary-layer character of the flow

s

"

Fig. 4 Velocity profiles computed for
-~ the free convection example for Ra =
}9  Ra=100,000 40000, using an 8 X 8 mesh.
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Fig. 5 Pressure profiles computed for the free
convection example for Ra= 100,000, using an
8 X 8 mesh and quadratic pressure interpolation.

resulting from the high concentration of buoyancy influences in these regions at this
high Rayleigh number. The flow trends are well represented, however, and it is noted
that the above-mentioned discontinuities are also experienced when the conventional
approach with reduced order pressure interpolation is employed.

The computed pressure distribution is illustrated in Fig. 5 for this problem. The
quadratic pressure interpolation is seen to provide a smooth and continuous
representation of the pressure field. Although the quadratic capability does not appear
necessary to describe the horizontal pressure variation, there are definite quadratic
variations exhibited in the vertical pressure distribution. In contrast to the above,
solutions obtained employing a linear pressure interpolation are presented in Fig. 6 for
a 7 X 7 mesh.

Af

T=-05 T=05

Fig. 6 Pressure profiles computed for e
the free convection example for Ra = Tj\
100,000, using a 7 X 7 mesh and linear =

pressure interpolation. i9 Ra = 100,000
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It is clear from examination of Figs. 5 and 6 that the linear pressure results
experience difficulty in smoothly describing the pressure field, while the quadratic
results provide a smoothly varying pressure field. This suggests that there may be an
increase in the pressure distribution accuracy obtained through the use of equal order
pressure and velocity interpolation, although detailed predictions or observations of the
pressure field are not available in the literature for this problem. The velocity field,
however, differs only slightly from that obtained using the conventional finite-element

method.

Shear Driven Flow in a Cavity

The second problem examined using the velocity correction procedure is the
so-called driven cavity problem—that of shear driven flow in a cavity, one sidewall of
which is moving at constant and uniform velocity. The problem geometry is illustrated
in Fig. 7 for a square cavity. No-slip boundary conditions are prescribed for the
velocity components over the cavity boundary with nonzero velocity applied to the
rightmost wall. Two values of the Reynolds number Re=u,L/v were considered,
Re = 100 and Re = 400, where u), is the velocity of the rightmost boundary.

The governing differential equations for this problem are

%‘-f u)}‘%«—-—g—f}f-ﬁv’u,’ (26)
and
s @)
ox;
where the nondimensional variables are
= w=g o=y p*=;‘i, 28)

The nonhomogeneous boundary condition applies to the rightmost boundary and is
given by ui(xf =1)=—Re. The singularities at the moving boundary corners were
handled by prescribing a transition profile over a thin element adjacent to the moving

y
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77rrrrrrrrrrrrrrrrrr7777{—%  Fig. 7 Problem geometry for the
driven cavity example.
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Fig. 8 Comparison of cavity centerline vertical velocity profiles with the results of Gartling and
Burggraf for (¢) Re = 100 and (b) Re = 400.

boundary. The transition profile for u3 was selected such that the velocity gradient at
the interfaces between the thin elements and the internal elements vanished at the
upper and lower cavity boundaries.

Solutions were obtained by impulsively starting the lid in motion at time f =0.
Quadratic, isoparametric, quadrilateral elements were used with seven elements in the
x; direction (including the thin row) and five elements in the x, direction. As a basis
for solution verification, the u, velocity profile along the horizontal cavity centerline
will be used as presented by Burggraf [19] and Gartling [20]. This velocity profile is
shown in Fig. 8, @ and b, for the Re = 100 and 400 cases, respectively. The solid line
represents the present predictions and it can be seen that agreement with the solution
of Burggraf and Gartling is generally good. Although linear pressure interpolation
solutions were also obtained for these problems, the velocity profiles differed only
slightly from those presented in Fig. 8. The quadratic and linear interpolation pressure
solutions showed a substantially larger difference. For the Re =100 case, the
quadratic and linear pressure solutions are shown in Fig. 9. It can be seen from Fig. 9
that the quadratic pressure solutions agree quite well with Burggraf’s predictions (he
used a 51 X 51 finite-difference mesh), while the linear pressure results indicate a
significant departure from the Burggraf numerical data. The pressure fields for
quadratic and linear pressure interpolation for the Re =400 problem are presented in
Fig. 10, @ and b, respectively. Again, the quadratic pressure interpolation results are in
significantly better agreement with the Burggraf results than are the linear pressure
results.

It is noted that, although the velocity predictions are relatively insensitive to
inaccuracies in the pressure solution, the accuracy of the pressure field itself is
significantly affected by the pressure interpolation order. Thus, where pressure field
accuracy is required, the velocity correction procedure offers the capability of
providing increased pressure accuracy by permitting equal order velocity and pressure
interpolation to be used.




448 G. E. SCHNEIDER ET AL.

—=7’ i

POINT AT WHICH PRESSURE LEVEL POINT AT WHICH PRESSURE LEVEL
ol WAS MATCHED WITH BURGGRAF [I9] {/wns MATCHED WITH BURGGRAF [19)

:

\ — . v e S 05 |
Re =100 120
® - BURGGRAF 9]
. 130
120
{a) (b)

Fig. 9 Pressure profiles computed for the driven cavity example for Re = 100 using (¢) quadratic
pressure interpolation and (b) linear pressure interpolation.
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Fig. 10 Pressure profiles computer for the driven cavity example for Re = 400 using (2) quadratic
pressure interpolation and (&) linear pressure interpolation.
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DISCUSSION AND CONCLUSIONS

The objective of the research program described in this paper has been the
removal of the requirement that the pressure field interpolation be of a lower order
than the velocity interpolation in the finite-element solution of fluid flow problems.
To this end, several methods have been proposed and examined, and to varying degrees
these have been successful in surmounting this obstacle. Definitive answers regarding the
accuracy of the proposed methods have not been provided in this paper, but this
question is beyond the scope of the current study. Much additional work will be
required to provide these answers. However, the groundwork has been laid in this
paper to indicate the directions that this future research can take.

It was demonstrated early in the paper how singular matrix equations may result
when equality of pressure and velocity representation is demanded of the conventional
finite-element formulation. The emergence of singular matrix equations was shown to
be linked to the application of boundary conditions to the algebraic equations.

The artificial compressibility scheme has been introduced in this paper to the
finite-element community, and this method was successful in surmounting the singular
matrix problem. The undesirable features accompanying the use of this method,
however, make this approach inadequate for use in fluid flow computation. The
application of the method, however, has served to confirm the eigenvalue predictions
of Tuann and Olson [13].

Two pressure Poisson formulations were employed in this work and both proved
successful in surmounting the pressure interpolation problem. The first form of the
method was found to yield intolerably slow convergence rates on problems in which
the recirculation rate is high. The second form of the method, wherein the Poisson
equation is used more appropriately for the determination of a pressure correction
field, provided a significant improvement over the first form of the method.

The velocity correction procedure has been introduced to finite-element analysis
of fluid flow and provides the first viable computational method for solving problems
with equality of representation of the pressure and velocity fields. Its success has been
attributed to the strict enforcement of the continuity constraint at every stage of the
iterative process. An order of magnitude increase in the convergence rate over the
previous methods was observed for the free convection problem at a Rayleigh number
of 10,000.

A preliminary assessment of the influence that reduced order pressure may have
on solution accuracy was made by way of two examples: the perfectly conducting
sidewall case of the free convection problem at a Rayleigh number of 100,000, and the
driven cavity problem at Reynolds numbers of 100 and 400. Qualitatively and
quantitatively correct velocity solutions were obtained in both cases. Although these
computed velocity distributions were observed to be insensitive to the pressure
interpolation order, the computed pressure distributions were highly sensitive to the
order of interpolation. The experience gained on the driven cavity problem indicates
that a significant improvement in pressure solution accuracy can be obtained using an
equal order pressure and velocity representation.

Although the efforts described in this paper, and in particular the examples
considered, deal with equality of representation of the pressure and velocity field
interpolation, the original impetus for the work was the removal of the restriction that
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the pressure interpolation be of a lower order than that used for velocity.
Consequently, the arguments presented here also apply to the use of pressure
interpolation that is higher in order than that used for the velocity field, and this may

be
to

—_—

10.

12.

13.

15.

16.

desirable in certain situations. Explicit consideration has not been given, however,
a higher order pressure method.
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