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Abstract

Thermally enhanced greases made of dispersions of
small conductive particles suspended in fluidic poly-
mers can offer significant advantages when used as a
thermal interface material (TIM) in microelectronics
cooling applications. The following study presents two
simple theorems for establishing bounds on the effec-
tive thermal conductivity of such inhomogeneous me-
dia. An upper bound is established when isotherms
are assumed perpendicular to the direction of heat flow
through the material. In a similar manner, a lower
bound is established when adiabats are assumed par-
allel to the direction of heat flow. As an example of
the application of these theorems, the TIM is assumed
to be composed of a cubic array of uniform spheres in
a surrounding medium. In most instances, a geometric
mean of the bounding solutions determined for this case
gives good agreement with experimental data available
in the literature. Numerical simulations of a spheri-
cal particle in a unit cube cell confirm the validity of
the model. This model is not applicable to systems in
which the discontinuous phase is either well-connected
throughout or has settled. The potential of extend-
ing this preliminary thermal resistance-based approach
to investigate other geometries and effects associated
with distribution, orientation, and boundary resistance
is discussed.

Nomenclature
A cross-sectional area [m2]
I integral
K 1 − 1/κ
k thermal conductivity [W/mK]
L distance between boundaries [m]
N number of particles
n local normal, number of numerical and

analytical values
R thermal resistance, ∆T/Q [K/W ]
RMS root mean square deviation
T temperature [K]
∆T temperature drop [K]
V volume [m3]
x numerical/analytical value
ε radius of the particle
κ conductivity ratio, kp/km

φ volume fraction, Vp/(Vp + Vm)

Subscripts

1, 2 regions of the cell
e effective
H, L high, low
lb, ub lower bound, upper bound
m matrix (continuous surrounding medium)
p particle (discontinuous phase)

1. Introduction
Numerous research initiatives have addressed the

minimization of thermal joint resistance in microelec-
tronic applications. Fluidic particle-laden polymers are
the latest thermal interface materials (TIMs) being in-
vestigated for these applications. The conductivity of
the fluid, typically an oil, is improved by including small
conductive particles. A fundamental problem which re-
mains to be addressed is how to predict the effective
thermal conductivity of these materials.

Fluidic particle-laden polymers are complex sys-
tems consisting of many small particles dispersed in
a continuous phase. In most cases, the details of the
microstructure are not completely known. This natu-
rally leads one to attempt to establish bounds on the
effective properties given such limited sample informa-
tion. The simplest bounds for effective conductivity
can be established from the particle volume fraction
and physical properties of the constituents alone. In
this case, the upper and lower bounds are given when
the materials are arranged in parallel or series with re-
spect to heat flow [1]. These bounds, however, can be
multiple orders of magnitude apart which can be prob-
lematic when trying to use the average to obtain an
accurate estimate of the effective properties. More rig-
orous bounding techniques using statistical correlation
functions have since been developed and are described
by Torquato and Milton [2, 3].

In the present study, two simple theorems are used
to establish bounds on the effective thermal conductiv-
ity of a fluidic TIM. The dispersed phase is assumed
to consist of uniform spherical particles in a cubic lat-
tice structure such that a characteristic cell can be
identified. An upper bound is then established when
isotherms are assumed perpendicular to the direction
of heat flow through the material. In a similar manner,
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a lower bound is established when adiabats are assumed
parallel to the direction of heat flow. These bounds are
more effective at constraining the solution within a nar-
row range of possible values and are also more relevant
for typical fluidic TIMs since the dispersed phase is typ-
ically a particle suspended in the medium (and not a
lamina).

2. Literature Review
The study of the effective conductivity of hetero-

geneous materials has a long history dating back to
Maxwell’s critical work on spherical particle suspen-
sions published more than a century ago [4, 5]. In light
of the technological importance of determining the ef-
fective properties of heterogeneous media, a vast body
of literature has since evolved. Many recent approaches
such as statistical analysis and numerical simulations
provide further insight into effects such as alignment of
the particles, particle distribution, and particle geome-
try.

Table 1 summarizes models developed by various
researchers which appear frequently in the literature.
There are others, in particular statistical bounds and
percolation theory which have been entirely neglected.
Many of the other models are extensions of the Maxwell
equation to incorporate effects such as particle geom-
etry (Hamilton and Crosser [6]), boundary resistance
(Benveniste [7]), thin coatings of thermally different
materials (Felske [8]), and multiple poles (McPhedran
and McKenzie [9]). Similar extensions can be made to
the Bruggeman equation.

The available analytical models do not show good
agreement with experimental results of thermally en-
hanced greases at large volume fractions. This is prob-
lematic as these volume fractions are typically of prac-
tical interest. As a result, a large number of semi-
analytical models with experimentally determined pa-
rameters have been proposed. Empirical correlations,
however, tend to be more useful for correlating data
than they are for making accurate predictions in a gen-
eral sense.

3. Model Development
It is assumed that the TIM is composed of N iden-

tical spherical particles dispersed throughout the con-
tinuous phase and that these particles are arranged in
a lattice structure. It is further assumed that the par-
ticles and the matrix material are isotropic and have
constant thermal conductivities kp and km. Because
N is very large, a characteristic cell can be identified
as the control volume subject to analysis without in-
troducing much error. The boundary conditions of the
cell are determined from symmetry (Figure 1). The
four faces of the cell parallel to the direction of heat
flow are adiabatic. The other two faces are isothermal

with the upper surface being the hotter. Heat thus en-
ters the control volume through the top boundary and
exits through the bottom boundary.

Figure 1 Characteristic (unit) cell

Steady conduction through the cell according to
Fourier’s law is given by

Q = keA
∆T

L
≡ ∆T

R
(1)

where ke is the effective thermal conductivity of the cell
and therefore of the heterogeneous medium as well, A
is the cross-sectional area, L is the distance between
isothermal boundaries, ∆T = TH − TL is the tempera-
ture drop across the cell, and R is the total resistance
of the cell. Upon rearranging Equation (1),

R =
L

keA
(2)

If a unit cell is selected, the substitutions L = 1 m and
A = L2 = 1 m2 can be made in Equation (2), yielding

ke =
1
R

(3)

and if the substitution ∆T = 1 K is made in Equation
(1),

ke = Q (4)

The total thermal resistance of the cell R is given
by the solution of the coupled 3-D Laplace equations
for the particle and the surrounding medium,

∇2Ti =
∂2Ti

∂x2
+

∂2Ti

∂y2
+

∂2Ti

∂z2
= 0 i = p, m (5)

The boundary conditions on the four adiabatic bound-
aries are given by

(
∂Tm

∂x

)∣∣∣∣
x=± 1

2

= 0 (6)

(
∂Tm

∂y

)∣∣∣∣
y=± 1

2

= 0 (7)
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Table 1: Effective thermal conductivity models

Model Equation

General effective medium theory [10] ke =
1
4

(
γ +

√
γ2 + 8kpkm

)

where γ = (3φ − 1) kp + [3(1 − φ) − 1] km

Maxwell [4] ke = km
2km + kp − 2φ(km − kp)
2km + kp + φ(km − kp)

Bruggeman [10]
(

kp − ke

kp − km

)(
km

ke

)1/3

= 1 − φ

Woodside and Messmer [11] ke = kφ
p k1−φ

m

Cheng and Vachon [12]
1
ke

=
(1 − B)

km
+

1√
C(kp − km)[km + B(kp − km)]

×

ln

[√
km + B(kp − km) + B/2

√
C(kp − km)√

km + B(kp − km) − B/2
√

C(kp − km)

]

where B =
(

3φ

2

)1/2

and C = 4
(

2
3φ

)1/2

=
4
B

Lewis and Nielsen [13] ke = km
1 + ABφ

1 − BCφ
where A = {1.5, 3} for {spheres, irregular particles},

B =
kp/km − 1
kp/km + A

,

C = 1 + φ

(
1 − φm

φ2
m

)
, and φm = 0.637

The boundary conditions on the two isothermal bound-
aries are given by

Tm

(
x, y,

1
2

)
= 1 (8)

Tm

(
x, y,−1

2

)
= 0 (9)

Perfect thermal contact between the particle and the
surrounding medium is assumed. The boundary condi-
tions at the interface are thus given by

Tp (x, y, z) = Tm (x, y, z) (10)

kp

(
∂Tp

∂n

)
= km

(
∂Tm

∂n

)
(11)

where n is the local normal to the interface. In addi-
tion, the temperature at the center of the particle must
remain finite, so

Tp (0, 0, 0) 6= ∞ (12)

The total heat flow into or out of the cell can be
obtained by applying Fourier’s law across either of the
isothermal boundaries,

Q =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

km

(
∂Tm

∂z

)∣∣∣∣
z=+ 1

2 or− 1
2

dxdy (13)

Equation (13) also gives the effective conductivity of
the unit cell and for constant thermal conductivity, at
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the upper boundary,

ke

km
=
∫ 1

2

− 1
2

∫ 1
2

− 1
2

(
∂Tm

∂z

)∣∣∣∣
z= 1

2

dxdy (14)

The above problem is well-posed but no simple analyt-
ical solution is available. Numerical work is required
to determine the temperature fields in the particle and
the surrounding medium.

Two simple theorems can be used to establish
bounds on the effective thermal conductivity of the cell.
As an example, consider steady conduction between
two infinitely long concentric cylinders. The external
cylinder is heated with respect to the inner cylinder.
The temperature field in the space between the two
bodies is clearly 2-D. If we allow the heat to flow di-
rectly from one point on the external cylinder to a point
on the inner one and connect the various differential
flux tubes in parallel, we will establish a lower bound
on the heat flow between the two bodies. Conversely,
if we select a differential ring in the space between the
two bodies and allow heat to flow in the θ-direction
and then connect these multiple rings in series, we will
establish an upper limit on the heat flow between the
two bodies. We thus have the following two general
postulates for establishing bounds on the effective ther-
mal conductivity of a composite when conduction is the
only mode of heat transfer: (1) a lower bound on the
effective conductivity of our cell is established if adia-
bats are assumed parallel to the direction of heat flow
(Figure 2 (a)) and (2) an upper bound is established if
isotherms are assumed perpendicular to the direction
of heat flow through the material (Figure 2 (b)).

(a) (b)

Figure 2 (a) Lower (parallel adiabats) and (b)
upper (perpendicular isotherms) bounds

2.1. Lower Bound – Parallel Adiabats
When the adiabats are arranged in parallel as shown

in Figure 2 (a),

1
R

=
1

R1
+

1
R2

= ke (15)

where R1 =
[
km(1 − πε2)

]−1 is the resistance of the
medium surrounding a right circular cylinder enclosing
the particle and R2 is resistance of the material inside
the cylinder. The volume enclosed by the region in-
side the cylinder is symmetric so that only one quarter
must be considered (Figure 3). A differential ring has
two resistances in series and has a total resistance

dR2 = dR2p + dR2m

or
1

dR2
=

1
dR2p + dR2m

(16)

where dR2p and dR2m are the differential resistances
of the particle and matrix in the ring. The differential
resistance of the particle can be written from Fourier’s
law and the equation of a circle as

dR2p =
z

kpdA
=

√
ε2 − x2

kpπxdx
(17)

where ε is the radius of the particle and x is the radius
of the ring. Likewise, the resistance of the part of the
ring that is composed of the surrounding medium can
be written as

dR2m =
0.5 − z

kpdA
=

0.5−
√

ε2 − x2

kpπxdx
(18)

Upon combining Equations (16) to (18) and integrat-
ing,

1
R2

= km2π

∫ ε

0

xdx

1 − 2K
√

ε2 − x2
= km2πIlb (19)

where

K ≡ 1 − 1
κ

and κ ≡ kp

km
(20)

Ilb ≡
∫ ε

0

xdx

1 − 2K
√

ε2 − x2
(21)

The closed form relation for the integral Ilb is given by

Ilb =
1

2K2
ln
(

1
1 − 2Kε

)
− ε

K
(22)

The lower bound on the effective conductivity (non-
dimensionalized with the conductivity of the surround-
ing medium) of the cell is thus given by

(
ke

km

)

lb

= 1 − πε2 + 2πIlb (23)
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Figure 3 R2: The thermal resistance of the
material inside a right circular cylinder
enclosing the particle

2.2. Upper Bound – Perpendicular Isotherms
When the isotherms are arranged in series as shown

in Figure 2 (b),

R = 2R1 + R2 =
1
ke

(24)

where R1 = (0.5 − ε)/km is now the resistance of the
medium above and below the rectangular prism enclos-
ing the particle. Again, we consider one quarter (half
of the upper half) of the resistance of the region shaded
as R2 (Figure 4). A differential ring now has two resis-
tances in parallel and has a total resistance

1
dR2

=
1

dR2p

+
1

dR2m

(25)

The differential resistance of the particle can be written
as

dR2p =
dz

kp

(
πx2

2

) =
2dz

kpπ(ε2 − z2)
(26)

and that of the part of the ring composed of the sur-
rounding medium can be written as

dR2m =
dz

km

(
0.5− πx2

2

) =
2dz

km(1 − π(ε2 − z2))
(27)

Upon combining Equations (25) to (23) and integrat-
ing,

R2 =
2

km

∫ ε

0

dz

1 + π(κ − 1)(ε2 − z2)
=

Iub

km
(28)

where

Iub ≡ 2
∫ ε

0

dz

1 + π(κ − 1)(ε2 − z2)
(29)

again has an analytical solution which is given by

Iub =

2 tanh−1

[
ε

√
π(κ − 1)

π(κ − 1)ε2 + 1

]

√
π(κ − 1)[1 + π(κ − 1)ε2]

(30)

and κ = kp/km as before. The upper bound on the ef-
fective conductivity (non-dimensionalized with the con-
ductivity of the surrounding medium) of the cell is thus
given by

(
ke

km

)

ub

= [1 − 2ε + 2Iub]
−1 (31)

Figure 4 R2: The thermal resistance of the
material inside a rectangular prism enclosing
the particle

3. Numerical Simulations
Numerical simulations were performed in FEMLAB

[14] to validate the model. Particle volume fractions
(φ = Vp/Vcell) of 10, 20, 31, 40, and 52.4% and non-
dimensional particle conductivities (κ = kp/km) of 10,
100, and 1000 were studied. One quarter of the cell ex-
tending from one isothermal boundary to the other was
selected as the computational domain. Approximately
150000 tetrahedral elements were used in each simula-
tion and numerical results were shown to be within 1%
of those from further refinement of the mesh.

The numerical work confirms that the upper and
lower bounds are indeed valid (Figures 5 to 7). The ge-
ometric mean of the upper and lower bounds gives good
agreement with the numerical results. The RMS er-
ror and maximum absolute difference between the two
are expressed as percentages and are shown in Table 2.
These are defined as follows:

RMS ≡

(√∑n
i=1 x2

i

n

)
× 100% (32)

where

xi ≡
(

(ke/km)model − (ke/km)numerical

(ke/km)model

)
× 100% (33)

and n is the number of points, in this case, 5. The maxi-
mum absolute difference, (xi)max, occurs in the vicinity
of φ = 40% for all three simulations. Both the RMS
and the maximum absolute difference increase with κ.

The model consistently overpredicts the numerical
results for the three cases studied. This suggests that
the 3-D temperature field inside the cell more closely
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resembles that for one in which adiabats are assumed
parallel to the direction of heat flow. Isotherms and
lines of flux from the numerical results for κ = 100 and
φ = 0.3 are included in Figure 8. The adiabats are
neither parallel to the direction of heat flow (Figure 8
(a)) nor are the isotherms perpendicular to it (Figure
8 (b)). The temperature field is thus in some condition
intermediate of the two.

φ

k e/
k m

0.1 0.2 0.3 0.4 0.5 0.6
1

2

3

4

5
Lower bound
Upper bound
Geometric mean
Numerical

Figure 5 Numerical results versus upper and
lower bounds for κ = 10

φ

k e/
k m

0.1 0.2 0.3 0.4 0.5 0.6

10

20

30
Lower bound
Upper bound
Geometric mean
Numerical

Figure 6 Numerical results versus upper and
lower bounds for κ = 100

φ

k e/
k m

0.1 0.2 0.3 0.4 0.5 0.6

50

100
150

Lower bound
Upper bound
Geometric mean
Numerical

Figure 7 Numerical results versus upper and
lower bounds for κ = 1000

(a) (b)

Figure 8 (a) Flux lines and (b) isotherms for
1/4 cell (κ = 100, φ = 0.3)

The effective conductivity of the cell for κ = 100 and
φ ≤ 40% is within 4% of the effective conductivity of
the cell for κ = 1000. This confirms the result of many
of the theoretical models (e.g. Maxwell [4]) which show
that any increase in the particle conductivity beyond
κ ' 100 produces very little further enhancement in
the effective conductivity of the medium. In taking the
limit of the upper and lower bounds in Equations (31)
and (23),

lim
κ→∞

(
ke

km

)

ub

= (1 − 2ε)−1 (34)

lim
κ→∞

(
ke

km

)

lb

= 1−πε2+2π

[
1
2

ln
(

1
1 − 2ε

)
− ε

]
(35)

The limiting enhancement is given by the geometric
mean of Equations (34) and (35). For a typical particle
volume fraction of 30%, the particle conductivity must
be increased by an order of magnitude (from κ = 100
to 1000) for a further enhancement of just 10% in the
effective conductivity. The effective conductivity for
κ = 100 is within approximately 30% of its maximum
possible enhancement (κ → ∞) (Figure 9).

φ

k e/
k m

0.1 0.2 0.3 0.4 0.5 0.6

10

40

70
100

κ → ∞
κ = 10
κ = 100
κ = 1000

Figure 9 Limiting enhancement for κ → ∞
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Table 2: RMS and maximum absolute difference between model and numerical results

κ = kp/km RMS (%) (xi)max(%)
10 6.1 8.1
100 25.8 33.0
1000 30.6 41.9

4. Comparison with Experimental Data
Experimental data of the effective thermal conduc-

tivity for composite systems were selected from the lit-
erature. Wong and Bollampaly [15] recently studied
the enhancement in the conductivity of an epoxy resin
by separately dispersing into it three different types
of particles up to volume fractions of φ = 50% (Fig-
ures 10 to 12). The particles used were spherical silica
(κ = 7.7), alumina (κ = 184.6), and silica-coated alu-
mina nitride (κ = 1128.2). The samples were cured
and solidified using a hardener. The agreement with
the model for each case is very good. In particular, the
model shows relatively good agreement for the alumina
and silica-coated alumina nitride samples despite the
irregular particle geometry.

φ

k e/
k m

0.1 0.2 0.3 0.4 0.5 0.6
1

2

3

4

5
Lower bound
Upper bound
Geometric mean
Experiment

RMS = 7.6%
|(xi)max| = 11.6%

Figure 10 Experimental data from Wong and
Bollampaly [15] for spherical silica particles
(κ = 7.7) in an epoxy resin

φ

k e/
k m

0.1 0.2 0.3 0.4 0.5 0.6

10

30

50
Lower bound
Upper bound
Geometric mean
Experiment

RMS = 37.8%
|(xi)max| = 79.8%

Figure 11 Experimental data from Wong and
Bollampaly [15] for almost spherical alumina
particles (κ = 184.6) in an epoxy resin

φ

k e/
k m

0.1 0.2 0.3 0.4 0.5 0.6

50

100
150

Lower bound
Upper bound
Geometric mean
Experiment

RMS = 9.6%
|(xi)max| = 13.1%

Figure 12 Experimental data from Wong and
Bollampaly [15] for irregular SCAN particles
(κ = 1128.2) in an epoxy resin

Sundstrom and Chen [16] studied the effective con-
ductivity of glass dispersions in commercial polystyrene
(κ = 7.3) for three different particle size ranges (62-88
µm, 125-149 µm, and 177-210 µm) up to φ = 40%. The
samples were melted under pressure in a mold and then
solidified by cooling. The experimental results (Figure
13) show excellent agreement with the model giving an
RMS error of 2.1% and maximum absolute difference
less than 4%.

φ

k e/
k m

0.1 0.2 0.3 0.4 0.5 0.6
1

2

3

4

5
Lower bound
Upper bound
Geometric mean
Experiment

RMS = 2.1%
|(xi)max| = 3.8%

Figure 13 Experimental data from Sundstrom
and Chen [16] for spherical glass particles in
polystyrene (κ = 7.3)

Tavman [17] studied a dispersion of aluminum ox-
ide particles in commerical high density polyethylene
(κ = 56.9). The polyethylene was in powder form and
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samples were prepared by the mold compression pro-
cess. The average particle size was 10-20 µm. The
model shows excellent agreement up to φ = 10% be-
yond which the model begins to underpredict the ex-
perimental results (Figure 14). The maximum absolute
difference is still 18%, half of the maximum absolute er-
ror obtained from Maxwell’s model.

φ

k e/
k m

0.1 0.2 0.3 0.4 0.5 0.6

5

10

15
20

Lower bound
Upper bound
Geometric mean
Experiment

RMS = 8.3%
|(xi)max| = 17.7%

Figure 14 Experimental data from Tavman
[17] for aluminum oxide particles in HDPE
(κ = 56.9)

Lin et al. [18] studied the effective conductivity
of cupric oxide (κ = 1067.9) and aluminum powders
(κ = 41.7) in an epoxy resin. The average particle size
of the cupric oxide powder was 3 µm and that of the
aluminum powder, 7 µm. A transient method was used
to determine the thermal diffusivity of cured spherical
samples. The model shows excellent agreement for the
composite of the cupric oxide powder (Figure 15). The
RMS error is reasonable for the aluminum oxide pow-
der composite (9.4%) but it appears that any further
loading of the sample will generate experimental re-
sults higher than the upper bound (Figure 16). The
model falls 30% below the experimental measurement
at φ = 28% for this sample.

φ

k e/
k m

0.1 0.2 0.3 0.4 0.5 0.6

50

100
150

Lower bound
Upper bound
Geometric mean
Experiment

RMS = 9.4%
|(xi)max| = 17.5%

Figure 15 Experimental data from Lin et al.
[18] for cupric oxide (κ = 1067.9) in an epoxy
resin

φ

k e/
k m

0.1 0.2 0.3 0.4 0.5 0.6

5

10

15
Lower bound
Upper bound
Geometric mean
Experiment

RMS = 15.2%
|(xi)max| = 28.6%

Figure 16 Experimental data from Lin et al.
[19] for aluminum powders (κ = 41.7) in an
epoxy resin

Woodside and Messmer [11] obtained experimental
data for quartz sand packs surrounded by air (κ =
325.8) for particle volume fractions of 41, 64, 69, and
81%. The particle conductivity was assumed constant
and equal for each sample (kp = 8.4 W/mK). The
measurements were made using the transient hot wire
method and found to agree well with other similar data.
Recently, Carson et al. [19] showed that the data of
Woodside and Messmer lie close to the lower bound of
the series conduction model (Figure 17). The proposed
model of a sphere in a unit cube is not able to capture
the behaviour of these samples. A possible explanation
of the unusual agreement of the experimental results
with the series model is the settling of the quartz sand.
In addition, note the relatively large volume fractions
for which the data is obtained, alone an indicator of the
potential failure of the model developed in this paper.

φ

k e/
k m

0 0.2 0.4 0.6 0.8 1

20

120
220
320 Lower bound

Upper bound
Geometric mean
Experiment
Series conduction

Figure 17 Experimental data from Woodside
and Messmer [11] for quartz sand in air
(κ = 325.8)

Carson et al. [20] studied suspensions of expanded
polystyrene (EPS) beads dispersed in a guar gel phase
(κ = 19) for volume fractions from 40 to 100%. A
transient method based on the analytical solution for
the temperature at the center of a sphere being cooled
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with convection boundary conditions was used. Ex-
perimental data were found to lie on the upper bound
of the parallel conduction model (Figure 18). The gel
was approximately 30 times more dense than the EPS
beads. The parallel bound is applicable for systems
in which the two phases are well-connected throughout
along the axis of heat transfer. This suggests that the
EPS beads formed continuous chain structures perco-
lating from the center of the spherical sample to its
outer boundary. Note again the high volume fractions
of the dispersed phase achieved by the composite. In
such sample, the sphere in a cube model presented in
this paper cannot be applied because it is only valid up
to φ ≈ 52.4%.

φ

k e/
k m

0 0.2 0.4 0.6 0.8 1

5

10

15
20

Lower bound
Upper bound
Geometric mean
Experiment
Parallel conduction

Figure 18 Experimental data from Carson et
al. [20] for EPS beads in gel (κ = 19)

5. Summary and Conclusions
The model developed in the present paper shows

good agreement with numerical and experimental re-
sults. The model consistently overpredicts the numeri-
cal results for κ = kp/km of 10, 100, and 1000. In the
three cases studied, the RMS error and maximum abso-
lute difference between the two increases with κ and is
largest for φ = 40%. The agreement with the selected
experimental data is generally equally good. Although
the model was developed for a spherical inclusion, the
agreement with irregular geometries is still adequate
for engineering purposes. There are limited instances
when the dispersed phase in the composite is either
well-connected forming continuous chains in the direc-
tion of heat flow or where the dispersed phase settles
to a layer perpendicular to this direction. The model
fails for these cases and the Weiner parallel and series
conduction bounds become adequate models, respec-
tively. Similar to effective medium theory, the current
model indicates that any increase in κ = kp/km be-
yond ∼ 100 for typical particle volume fractions results
in very little further enhancement in the effective con-
ductivity of the composite. For example, at φ = 30%
for a non-dimensional particle conductivity of κ = 100,

the effective conductivity is within 30% of its maximum
possible enhancement (for κ → ∞). The model devel-
opment is straightforward and the analysis can easily
be performed and extended by engineers.

6. Future Work
Additional insight into the effective thermal con-

ductivity of composites can be obtained if the present
analysis is extended to dispersions of other geometries
(ellipsoids, prismoids, right circular cylinders, etc.). A
collection of such models for different particle geome-
tries can help confirm whether the particle volume frac-
tion is a suitable non-dimensional parameter. In addi-
tion, it can provide information regarding effects such
as material distribution and particle orientation with
respect to heat flow. The effects of packing could fur-
ther be investigated in more detail if a characteristic
cell of arbitrary dimensions is selected so that the par-
ticles are no longer constrained to lie at equal distances
from one another in all directions.
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