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The main objective of this study is to investigate heat transfer from tube banks in crossflow under isothermal

boundary conditions. Because of the complex nature of fluid flow and heat transfer in a tube bank, the heat transfer

from a tube in the first row of an in-line or staggered bank is determined first. For this purpose, a control volume is

selected from the leading row of a tube bank and an integral method of boundary layer analysis is employed to

determine the average heat transfer from the front stagnation point to the separation point, whereas the heat transfer

from the separation point to the rear stagnation point is determined by an empirical correlation. To include the effect

of the remaining rows, an empirical correlation is employed. Themodels for in-line and staggered arrangements are

applicable for use over a wide range of Reynolds and Prandtl numbers as well as longitudinal and transverse pitch

ratios.

Nomenclature

a = dimensionless longitudinal pitch � SL=D
b = dimensionless transverse pitch� ST=D
CV = control volume
c = dimensionless diagonal pitch � SD=D
cp = specific heat of fluid, J=kg � K
D = tube diameter, m
Fa = arrangement factor
h = average heat transfer coefficient, W=m2 � K
k = thermal conductivity, W=m � K
L = tube length, m
N = total number of tubes in bank� NTNL
NL = number of tubes in longitudinal direction
NT = number of tubes in transverse direction
NuD = Nusselt number based on tube diameter � Dh=kf
Pr = Prandtl number � �=�
Q = total heat transfer rate, W
ReD = Reynolds number based on tube diameter � DUmax=�
SD = diagonal pitch, m
SL = longitudinal distance between two consecutive tubes,

m
ST = transverse distance between two consecutive tubes, m
s = distance along curved surface of tube measured from

forward stagnation point, m
T = temperature, �C
Uapp = approach velocity, m=s
Umax = maximum velocity in minimum flow area, m=s
U�s� = velocity in inviscid region just outside boundary layer

m=s
u = s component of velocity in boundary layer, m=s
v = � component of velocity in boundary layer, m=s
� = thermal diffusivity, m2=s
�Tlm = log mean temperature difference, �C
�T = thermal boundary layer thickness, m
� = hydrodynamic boundary layer thickness, m

� = distance normal to and measured from surface of tube,
m

� = pressure gradient parameter
� = angle measured from stagnation point, radians
� = ratio of thermal to hydrodynamic boundary layer

thickness

Subscripts

a = ambient
f = fluid
o = outlet
p = pressure
T = thermal
w = wall

I. Introduction

H EAT transfer in flow across a bank of tubes is of particular
importance in the design of heat exchangers. Heat exchangers

are found in numerous industrial applications, such as steam gen-
eration in a boiler or air cooling in the coil of an air conditioner. Tube
banks, used in heat exchangers, are usually arranged in an in-line or
staggered manner and are characterized by the dimensionless trans-
verse, longitudinal, and diagonal pitches, shown in Figs. 1 and 2.

This study is one of the first attempts to develop analytical models
for the heat transfer from tube banks (in-line and staggered). These
models are developed in terms of longitudinal and transverse pitch
ratios and Reynolds and Prandtl numbers. Depending upon the ap-
plication, they are classified as compact or widely spaced tube banks.
Typically, one fluid moves over the tubes, while the other fluid, at a
different temperature and pressure, passes through the tubes. In this
study, the authors are specifically interested in the convection heat
transfer associated with crossflow over the tubes.

Based on the pertinent data available up to 1933, Colburn [1]
proposed a simple correlation for heat transfer for flow across banks
of staggered tubes as follows:

NuD � 0:33Re0:6D Pr
1=3 (1)

This correlation works well for 10 or more rows of tubes in a
staggered arrangement and for 10< ReD < 40; 000. Then Huge [2],
Pierson [3], Omohundro et al. [4], Bergelin et al. [5–7], Jones and
Monroe [8], Gram et al. [9], Žukauskas [10], Aiba et al. [11,12], and
Žukauskas and Ulinskas [13] reported extensive experimental data
for heat transfer and fluid friction during viscous flow across in-line
and staggered banks of tubes under both isothermal and isoflux
boundary conditions. Grimison [14] correlated the experimental data
of Huge [2] and Pierson [3] for both arrangements and gave a
correlation of the form
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NuD � CRenD (2)

His empirical relation is valid for air only and pertains to tube banks
having ten or more rows of tubes in the flow direction. For fewer
rows, Kays and London [15] gave a correction factor C2 such that

NuDjNL<10 � C2NuDjNL�10 (3)

The values of C, C2, and n are given, in tabular form, in most heat
transfer text books (e.g., Holman [16] and Kreith and Bohn [17]) for
both in-line and staggered arrangements. Grimison [14] also
correlated the test measurements of Pierson [3] and Huge [2] using a
second method and derived the following expression:

NuD � 0:32FaRe
0:61
D Pr0:31 (4)

where Fa was presented graphically by Grimison [14] for the vari-
ous values of ReD, subject to the dimensionless transverse and
longitudinal pitches.

Hausen [18] modified slightly the above correlation and presented
an empirical formula for the tubes Fa instead of the graphical
representation by Grimison [14]. For an in-line arrangement

NuD � 0:34FaRe
0:61
D Pr0:31 (5)

can be used with

Fa � 1� �a� 7:17=a 	 6:52�

 �0:266=�b 	 0:8�2 	 0:12�

����������������������
1000=ReD

p
(6)

For a staggered arrangement

NuD � 0:35FaRe
0:57
D Pr0:31 (7)

can be employed with

Fa � 1� 0:1a� 0:34=b (8)

Žukauskas [10] gave the following experimental correlation for the
average Nusselt number for a tube bank consisting of 16 or more
rows:

NuD � FCRenDPr
m (9)

where the coefficients C, m, n and the parameter F are given in
tabular form (Kreith and Bohn [17]). Launder andMassey [19], Fujii
and Fujii [20], Dhaubhadel et al. [21], Wung and Chen [22], and
Murray [23] presented numerical solutions of local heat transfer for
the tube bank problem for awide range of longitudinal and transverse
pitches: Reynolds and Prandtl numbers.

Beale [24] conducted a detailed numerical study of fluid flow and
heat transfer in tube banks. Using complex function theory, he
obtained a potential flow solution in the form of a power series. He
presented his results in the form of skin friction, pressure drop, and
heat transfer for different thermal boundary conditions. Later Beale
and Spalding [25,26] extended the previous work for laminar fully
developed crossflow and heat transfer in tube-bank heat exchangers.
They obtained a wide range of results for in-line square, rotated
square, and equilateral triangle configurations.

Wilson and Bassiouny [27] developed a mathematical model to
simulate the laminar and turbulent flow fields inside tube banks.
They solved the conservation equations of mass, momentum, and
energy using an implicit finite volume procedure. They found that
pressure drop and friction factor increased with the longitudinal
pitch. They recommended the use of a longitudinal pitch ratio
SL  3 to obtain the best performance and to achieve a high degree
of compactness in an in-line arrangement, whereas SL  1:5 was
needed to reduce friction and enhance NuD in the staggered
arrangement.

Mandhani et al. [28] solved the fluid flow and energy equations
numerically to obtain detailed temperature fields and the distribution
of Nusselt number on the surface of a typical cylinder in a cylinder
bundle for the steady incompressible flow of Newtonian fluids. They
found that the surface averaged value of Nusselt number increases
with decreasing values of porosity and increasing values of Prandtl
and Reynolds numbers. Their results were found in satisfactory
agreement with previous numerical and experimental data for a
single cylinder and for the tube banks.

The preceding literature review shows that almost all studies are
experimental/numerical and no comprehensive analytical model
exists for any in-line or staggered arrangement that can be used for a
wide range of parameters. The empirical models were developed for
specific fluids, values of longitudinal and transverse pitch ratios, and
for a specific range of Reynolds numbers. Because of the complex
nature of heat transfer in tube banks, the user cannot interpolate/
extrapolate these correlations for other values of longitudinal and
transverse pitch ratios, or for other fluids or for Reynolds numbers
other than the specified range, often found in existing tube banks.
New comprehensivemodels, developed in this study, can be used for
the following:

1:25  a; b  3:0; 103  ReD  2 
 105;

1  Pr  1000

II. Analysis

Consider a uniform flow of an incompressible Newtonian fluid
past a tube bank as shown in Figs. 1 and 2. The ambient temperature
is assumed to be Ta. The surface temperature of the tube wall is
Tw�>Ta�. The flow is assumed to be laminar, steady, and two dimen-
sional. In determining heat transfer from tube banks, the ambient
temperature of the incoming fluid is taken as the determining tem-
peraturewhereas the diameter of the tube is taken as the characteristic

SL

ST

Uapp, Ta

D

Fig. 1 Schematic of an in-line arrangement.

SL

ST

D SD
Uapp, Ta

Fig. 2 Schematic of a staggered arrangement.
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length in the definition of Reynolds and Nusselt numbers. These
numbers are defined as ReD �DUmax=� and NuD �Dh=kf, where
Umax is used as a reference velocity in the calculations of fluid flow
and heat transfer for both types of arrangements, and is given by

Umax �max��b=b 	 1�Uapp; �b=c 	 1�Uapp� (10)

where c�
�������������������������
a2 � �b=2�2

p
is the dimensionless diagonal pitch in the

case of the staggered arrangement.

A. Heat Transfer from a Tube Bank

The total heat transfer rate from the tube bank depends upon the
average heat transfer coefficient, the total surface area for heat
transfer, and the inlet and outlet fluid temperatures, and is given by

Q� h�N�DL��Tlm (11)

where the log mean temperature difference is given by

�Tlm � �Tw 	 Ta� 	 �Tw 	 To�
ln ��Tw 	 Ta�=�Tw 	 To��

(12)

where To is the outlet temperature of the fluid and can be obtained
from using energy balance:

To � Tw 	 �Tw 	 Ta� � exp
�
	 �DNh

	UappNTSTcp

�
(13)

The only unknownquantity in Eq. (11) is the average convection heat
transfer coefficient for the tube bank that depends on the geometry,
the maximum velocity (Umax) in the minimum free cross section
between two tubes, and the arrangement of tubes, as well as the
physical properties of the fluid (	; 
; cp; and kf). The functional
relationship for the average dimensionless heat transfer can be
written as

NuD � f�ReD; Pr; b; a� (14)

Extensive experimental investigations (Žukauskas and Ulinskas
[13]) indicate that the average heat transfer from a tube in a tube bank
is also dependent on its location in the bank. The difference in heat
transfer from tubes of the first and inner rows depends on the
Reynolds number, the number of tubes, the longitudinal and
transverse pitch ratios, and the arrangement of the tubes in a bank.
The increase in heat transfer is also observed due to flow blockage by
the upstream tubes. For ReD > 103, they observed that heat transfer

from the inner tube rows starts to increase as a result of higher
turbulence, which is generated by the first tube rows. When the
number of rows in a bank along the streamwise direction is large, the
higher heat transfer rate of the remaining rows must be taken into
account. So the average heat transfer from the whole bank can be
written as

NuD � C1NuDf (15)

whereNuDf is the dimensionless average heat transfer from a tube in
the first row of a bank of smooth tubes in crossflow and C1 is the
coefficient that accounts for the dependence of the average heat
transfer on the number of rows of a tube bank. The coefficient C1 is
derived from the experimental data of Žukauskas and Ulinskas [13]
for ReD > 103 for both arrangements and is given by

C1 �
� �1:23� 1:47N1:25

L �=�1:72� N1:25
L � in-line

�1:21� 1:64N1:44
L �=�1:87� N1:44

L � staggered (16)

ForNL � 16, the value of C1 is 1.43 for the in-line arrangement and
1.61 for the staggered arrangement.

B. Heat Transfer from a Single Tube in a Tube Bank

The average heat transfer coefficient of a single tube taken from
thefirst rowof an in-line or staggered tube bank can be determined by
an integral method of boundary layer analysis. In this study, the von
Kármán–Pohlhausen integral method is used to solve themomentum
and energy equations for an isothermal boundary condition. A
fourth-order velocity profile in the hydrodynamic boundary layer
and a third-order temperature profile in the thermal boundary layer
are used. For this purpose, a control volume is considered from the
first row of an in-line or staggered arrangement as shown in Figs. 1
and 2. The width of the control volume is taken as unity for
convenience, and the length and height, in dimensionless form, are
taken as a and b=2 (� ST=2D), respectively. Because the flow is
symmetrical about the horizontal centerline, the solution has been
obtained for half of theflowdomain (i.e., forABCEFG inFig. 3). The
top and bottom surfaces of the control volume can be regarded as
impermeable, adiabatic, and shear free (no mass transfer and shear
work transfer across the boundary). The heat transfer between the
tube and stream is Q and the wall temperature is Tw. The governing
equations, velocity and temperature distributions for the CV, are the
same as described by Khan et al. [29] for a single isolated cylinder.
The potential flow velocity outside the boundary layer was obtained
by using complex variable theory and following Suh et al. [30] it can
be written as (see Appendix)

U� Umaxf��� (17)

where

f��� � sin � 	 2sin2
�
�

2a

��
cosh���=a� sin �� sin �

cosh���=a� sin �� 	 cos���=a� cos �� � sinh

�
�

a
sin �

�
sinh���=a� sin �� sin �� cos � sin���=a� cos ��

�cosh���=a� sin �� 	 cos���=a��cos ���2
�

(18)

for an in-line arrangement and

f��� � sin � 	 2sin2
�
�

4a

��
cosh��� sin ��=2a� sin �

cosh��� sin ��=2a� 	 cos��� cos ��=2a� 	 sinh

�
� sin �

2a

�
sinh��� sin ��=2a� sin �� sin��� cos ��=2a� cos �

�cosh��� sin ��=2a� 	 cos��� cos ��=2a��2

� cosh��� sin � 	 2b�=2a� sin �
cosh��� sin � 	 2b�=2a� 	 cos��� cos � 	 2a�=2a�

	 sinh

�
�
sin � 	 2b

2a

�
sinh��� sin � 	 2b�=2a� sin �� sin��� cos � 	 2a�=2a� cos �

�cosh��� sin � 	 2b�=2a� 	 cos��� cos � 	 2a�=2a��2
�

(19)

for the staggered arrangement.
The following boundary conditions are specified for the control volume of Fig. 3.
1) On the curved surfaces of the tube, u� 0, v� 0, and T � Tw.
2) Along the top and bottom of the control volume and on the side-wall regions between tubes, v� 0, �w � 0, and Q� 0.
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3) At large distances upstream of the CV, u�Uapp and T � Ta.
Following Khan et al. [29] and assuming the presence of a thin

thermal boundary layer �T along the tube surface in the CV, the
energy integral equation for the isothermal boundary condition can
be written as

d

ds

Z
�T

0

�T 	 Ta�ud��	� @T
@�

����
��0

(20)

Using a fourth-degree polynomial velocity profile and a third-degree
polynomial temperature profile that satisfy all the boundary
conditions (Khan et al. [29]) and assuming �� �T=� < 1 forPr � 1,
Eq. (20) can be integrated to give

�T�d=ds��U�s��T���� 12�� � 90� (21)

whereU�s� is given by Eq. () and � is obtained from the momentum
integral equation and the definition of momentum boundary layer
thickness. The values of � are obtained cor-
responding to each position along the tube surface and are fitted by
the least squares method and given by

�� 7:36 	 3:74�� 27:95�2 	 96:64�3 � 157:83�4

	 135:87�5 � 58:65�6 	 10:10�7 (22)

Integrating Eq. (21) with respect to s, one can obtain local thermal
boundary layer thicknesses

�
�T���
D

�
� Re1=2D Pr1=3 �

�������������������������������������������������
90I1

��� 12�2f���2
������������
�

2g���

s
3

vuut
(23)

where g��� is the derivative of the function f���with respect to � and
I1 is given by

I1 �
Z
�

0

f������ 12�d� (24)

The local heat transfer coefficient can be written as

h��� � 3kf=2�T (25)

Thus the dimensionless local heat transfer coefficient can be written
as

NuDf���jisothermal

Re
1=2
D Pr1=3

� 3

2

�������������������������������������������������
��� 12�2f���2

90I1

������������
2g���
�

r
3

s
(26)

The average heat transfer coefficient is defined as

h� 1

�

Z
�

0

h���d�� 1

�

Z
�s

0

h���d�� 1

�

Z
�

�s

h���d� (27)

In dimensionless form, the heat transfer coefficient can be written as

NuDf � hD=kf � NuDf1 � NuDf2 (28)

The first term on the right-hand side gives the dimensionless average
heat transfer coefficient of the tube from the front stagnation point to
the separation point, and can be obtained, using Eqs. (23–25), for
different pitch ratios and then correlated to obtain a single expression
in terms of the ReD and Pr numbers for both in-line and staggered
arrangements. This expression can be written as

Nu Df1 � C2Re
1=2
D Pr1=3 (29)

where C2 is a constant that depends upon the longitudinal and
transverse pitches, arrangement of the tubes, and thermal boundary
conditions. For the isothermal boundary condition, it is given by:

C2�
8<
: �	:016� :6a2�=�0:4�a2� in-line

�0:588�0:004b��0:858�0:04b	0:008b2�1=a staggered

(30)

Equation (30) is valid for 1:25  a  3 and 1:25  b  3 for both
arrangements.

The second term on the right-hand side of Eq. (28) gives the
dimensionless average heat transfer coefficient of the tube from the
separation point to the rear stagnation point. The integral analysis is
unable to predict these heat transfer coefficients. The experiments
(Žukauskas and Žiugžda [31], Fand and Keswani [32], and
Nakamura and Igarashi [33], among others) show that the heat
transfer from the rear portion of the cylinder increases with the
Reynolds numbers. From a collection of all known data, Van der
Hegge Zijnen [34] demonstrated that the heat transferred from the
rear portion of the cylinder to the air can be determined from

NuDf2 � 0:001ReD (31)

Thus, the total heat transfer coefficient from a single tube in the first
row can be written as

NuDf � C2Re
1=2
D Pr1=3 � 0:001ReD (32)

III. Results and Discussion

According to Žukauskas and Ulinskas [13], tube banks with
b 
 a  1:25 
 1:25 are considered compact, and with b 
 a �
2 
 2 they are said to be widely spaced. For both compact and wide
tube banks, Incropera and DeWitt [35] solved a problem of a
staggered tube bank that is used for space heating. In this study, that
problem is chosen for comparing the results of the present analysis.
Incropera and DeWitt [35] assumed steady state conditions,
negligible radiation effects, and negligible effect of change in fluid
temperature on fluid properties. They used the data given in Table 1
to calculate an air-side convection coefficient and heat transferred by
the tube bank.

Table 1 Data used by Incropera and Dewitt [35] for a staggered tube

bank

Quantity Dimension

Tube diameter, mm 16.4
Longitudinal pitch, mm 20.5, 34.3
Transverse pitch, mm 20.5, 31.3
Number of tubes, staggered 8 
 7
Tube surface temperature, �C 70
Air properties:
Approach velocity, m=s 6
Thermal conductivity, W=m � K 0.0253
Density, kg=m3 1.217
Specific heat, J=kg � K 1007
Kinematic viscosity, m2=s 14:82 
 10	6

Prandtl number 0.701
Ambient temperature, �C 15

Umax

P cos

θ

η
s w sin

θ

SL

ST /2

Uapp , Ta

w

P 

F 

E 

D/2

CB 0
A

w = 0, Q = 0

Hydrodynamic
boundary layer

G 

Tw

τ

w = 0, Q = 0τw = 0, Q = 0τ

θτ

τ

θ

Fig. 3 Control volume for prediction of heat transfer froma tube bank.
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Incropera and DeWitt [35] solved this problem by using
Žukauskas and Ulinskas [13] correlations, whereas the present
analysis uses an analytical model. The results are shown in Table 2
for a compact bank and in Table 3 for a widely spaced bank. Table 2
shows that the present analysis gives higher heat transfer rate (around
18%) than Incropera and DeWitt [35], whereas Table 3 shows that
the present heat transfer rate is 22% higher than Incropera and

DeWitt [35]. The reason for higher heat transfer rates in the present
case might be due to the fact that Incropera and DeWitt [35] used the
same constants in their correlation for both cases, whereas the present
models are sensitive to pitch ratios. The comparison of Tables 2 and 3
shows that heat transfer of a bank decreases with increasing pitch
ratio.

Average heat transfer from a single tube in the first row of
symmetrical in-line tube banks with 1:25 
 1:25 and 2:0 
 2:0 pitch
ratios is shown in Figs. 4 and 5. In both cases, the average heat
transfer increases with the Reynolds numbers and the behavior
approximates a linear dependence on the logarithmic scale. The
comparison of both figures show that the heat transfer increases in
symmetrical in-line tube bankswith their transverse and longitudinal
pitch ratios. Turbulence generated by the first rows penetrates the
boundary layer developed on the tube more effectively than in
compact symmetrical in-line tube banks. In compact banks, tur-
bulence decays as a result of the flow being compressed between
longitudinal rows [13]. The present results are compared with the

ReD

N
u f

103 104 105
101

102

103

Analytical (present model)
Experimental (Zukauskas and Ulinskas [13])

In-line

1.25 x 1.25

First row

ˇ

Fig. 4 Average heat transfer from the first row of a 1:25 � 1:25 in-line
tube bank.

ReD

N
u f

103 104 105
101

102

103

Analytical (present model)
Experimental (Zukauskas and Ulinskas [13])

In-line

2 x 2

First row

ˇ

Fig. 5 Average heat transfer from the first row of a 2:0 � 2:0 in-line

tube bank.

ReD

N
u f

103 104 105
101

102

103

Analytical (present model)
Experimental (Zukauskas and Ulinskas [13])

Staggered

2.0 x 1.25

First row

ˇ

Fig. 6 Average heat transfer from the first row of a 2:0 � 1:25
staggered tube bank.

Table 3 Comparison of results for a wide tube bank (1:9 � 2:1)

NuD h, W=m2 � K To,
�C Q, kW

Incropera and DeWitt [35] 87.9 135.6 25.5 19.4
Present analysis 113.15 175.15 27.5 20.1

Table 2 Comparison of results for a compact tube bank (1:25 � 1:25)

NuD h, W=m2 � K To,
�C Q, kW

Incropera and DeWitt [35] 152.0 234.0 38.5 28.4
Present analysis 186.8 288.3 39.2 25.5

ReD

N
u f

103 104 105
101

102

103

Analytical (present model)
Experimental (Zukauskas and Ulinskas [13])

2.6 x 1.3

Staggered

First Row

ˇ

Fig. 7 Average heat transfer from the first row of a 2:6 � 1:3 staggered
tube bank.
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experimental data of Žukauskas and Ulinskas [13]. The agreement is
found to be good in both cases.

Figures 6 and 7 show the average heat transfer from a single tube in
the first row of asymmetrical staggered tube banks with 2:0 
 1:25
and 2:6 
 1:3 pitch ratios. They show significant variation in the heat
transfer at large Reynolds numbers for a large change in the
transverse pitch ratio and a small change in the longitudinal pitch
ratio. These results are also found to be in good agreement with the
experimental data of Žukauskas and Ulinskas [13]. Similar results
were obtained by Bergelin et al. [6,7] for the flow of air.

Average heat transfer values for the entire bank can be determined
from Eq. (15) depending upon the number and the type of
arrangement of tubes. For a compact in-line bank 1:25 
 1:25 with
NL � 16, the average heat transfer values are plotted versus ReD in
Fig. 8. On the logarithmic scale, heat transfer values increase linearly
with the Reynolds numbers. The present values are compared with
the empirical correlations of Grimison [14] and Žukauskas and
Ulinskas [13]. Both correlations are found to be in good agreement
with the analytical results. Figure 9 shows the heat transfer from a
widely spaced staggered tube bank (2:0 
 2:0). The results are
comparedwith the experimental data ofŽukauskas andUlinskas [13]

for the same pitch ratios. Good agreement is found between the
analytical and experimental results.

The comparison of the average heat transfer from both in-line and
staggered tube banks for the same transverse and longitudinal pitch
ratios is shown in Fig. 10. For the same pitch ratio, the heat transfer is
found to be higher in a staggered bank than in an in-line bank. This is
due to the fact that in a staggered bank the path of the main flow is
more tortuous and a greater portion of the surface area of downstream
tubes remains in this path.

IV. Conclusion

Heat transfer from tube banks in crossflow is investigated
analytically, and simplified models of heat transfer for both arrange-
ments (in-line and staggered) are presented. The coefficient C1 in
Eq. (16) is derived from the experimental data of Žukauskas and
Ulinskas [13] and C2 in Eq. (29) is determined by fitting the analyti-
cal results obtained for various pitch ratios in both arrangements. The
results obtained from this investigation are as follows:

1) Bothmodels can be applied over awide range of parameters and
are suitable for use in the design of tube banks.

2) The average heat transfer coefficients for tube banks in
crossflow depend on the number of longitudinal rows, longitudinal
and transverse pitch ratios, and Reynolds and Prandtl numbers.

3) Compact banks (in-line or staggered) indicate higher heat
transfer rates than widely spaced ones.

4) The staggered arrangement gives higher heat transfer rates than
the in-line arrangement.

Appendix

I. Cylindrical Tubes in an In-Line Arrangement

Following Suh et al. [30], the complex potential for in-line arrays,
subjected to uniform flow, can be written as

w�z� � Uappz�
X1

j;k�	1




2���z 	 kSL� 	 ijST �

� Uappz�



2�

X1
j;k�	1

1

��z 	 kSL� 	 ijST �
(33)

where j and k are the number of rows and columns. Using

X1
j�	1

1

z 	 ijST
� �

ST
coth

�
�z

ST

�
(34)

ReD

N
u D

103 104 105
101

102

103
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ˇ

Fig. 8 Average heat yransfer from an in-line tube bank.
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Fig. 9 Average heat transfer from a staggered tube bank.
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the complex potential for in-line bank can be written as

w�z� �Uappz�



2ST

X1
k�	1

coth
�

ST
�z	 kSL� �Uappz�




2ST
T�z�

(35)

where

T�z� �
X1
k�	1

coth



2ST
�z 	 kSL� (36)

Using complex variable theory, it can be shown that

T�z� � �ST=2SL� cot��z=SL� (37)

Therefore, the complex potential will be

W�z� �Uappz� �
=4SL� cot��z=SL� (38)

which gives the complex velocityW 0�z� as follows:

W 0�z� � Uapp 	



4SL

1

sin2��=SL�
�
�

SL

�
(39)

At the surface of the tube, W 0�R� � 0, ) 
=4SL �
�UappSL=��sin2��R=SL� Therefore the required potential flow
function for in-line tubes will be

W�z� � �� i �Uappfz� C cot��z=SL�g (40)

where � and  are the potential and stream functions and C is a
constant, given by

C� �SL=��sin2��R=SL� (41)

It is interesting to note here that the potential flow field has no
dependence on the transverse spacing ST for the infinite number of
rows. The stream function  in polar coordinates �r; �� can be
obtained from Eq. (40) as

 � Uapp

�
r sin � 	 C sinh�C1r sin ��

cosh�C1r sin �� 	 cos�C1r cos ��
�

(42)

where C1 � 2�=SL is a constant. The radial and transverse

components of velocity at the surface of the tube can be written as

ur �	�1=r��@ =@��jr�R and u� � @ =@rjr�R (43)

which gives

ur � 0 and u� �Uappf��� (44)

where

f���� sin�	 2sin2
�
�

2a

��
cosh���=a� sin�� sin�

cosh���=a� sin�� 	 cos���=a�cos��

� sinh

�
�

a
sin�

�
sinh���=a� sin�� sin�� cos� sin���=a�cos��

�cosh���=a� sin��	 cos���=a�cos���2
�

(45)

The resultant potential flow velocity will be

U� Uappf��� (46)

II. Cylindrical Tubes in Staggered Arrangement

Following Suh et al. [30], the complex potential for in-line arrays,
subjected to uniform flow, can be written as

W�z� � �� i �Uapp

�
z� C

�
cot

�
�z

2SL

�

� cot

�
��z 	 �SL � iST��

2SL

���
(47)

where � and  are the potential and stream functions and C is a
constant, given by

C� �2SL=��sin2��R=2SL� (48)

The stream function  in polar coordinates �r; �� can be obtained
from Eq. (47) as

 �Uapp

�
r sin � 	 2SL

�
sin2

�
�R

2SL

��
sinh���r sin ��=SL�

cosh���r sin ��=SL� 	 cos���r sin ��=SL�
�

	
�
2SL
�

sin2
�
�R

2SL

�
sinh����r sin � 	 ST��=SL�

cosh����r sin � 	 ST��=SL� 	 cos����r cos � 	 SL��=SL�
��

(49)

The radial and transverse components of velocity at the surface of the tubes can be obtained by using Eq. (43) and can be written like Eq. (44),
where

f��� � sin � 	 2sin2
�
�

4a

��
cosh��� sin ��=2a� sin �

cosh��� sin ��=2a� 	 cos��� cos ��=2a� 	 sinh

�
� sin �

2a

�
sinh��� sin ��=2a� sin �� sin�� cos �

2a
� cos �

�cosh��� sin ��=2a� 	 cos��� cos ��=2a��2

� cosh��� sin � 	 2b�=2a� sin �
cosh��� sin � 	 2b�=2a� 	 cos��� cos � 	 2a�=2a�

	 sinh

�
�
sin � 	 2b

2a

�
sinh��� sin � 	 2b�=2a� sin �� sin��� cos � 	 2a�=2a� cos �

�cosh��� sin � 	 2b�=2a� 	 cos��� cos � 	 2a�=2a��2
�

(50)

The resultant potential flow velocity will be:
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U� Uappf��� (51)
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