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Conduction Shape Factor Models
for Three-Dimensional Enclosures

P. Teertstra,∗ M. M. Yovanovich,† and J. R. Culham‡

University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Analytical models are presented for conduction shape factors for three-dimensional regions formed between an
isothermal, arbitrarily shaped body and its concentric, arbitrarily shaped surrounding enclosure. The model is
based on the exact solution for the concentric spheres, and two methods are developed to predict the effective gap
spacing. The models are validated using existing numerical data from the literature and data from simulations
performed using a commercial computational fluid dynamics software package. The models are shown to be in
excellent agreement with the data for all enclosures with geometrically similar boundary shape, within 3% rms.
For enclosures formed between different boundary shapes, the models are shown to be accurate within 5% rms
when the minimum aspect ratio, that is, the smallest outer boundary dimension over the largest inner dimension,
is greater than 1.5.

Nomenclature
A = area, m2

a, b, c = cuboid side dimensions, m
d = diameter, m
k = thermal conductivity, W/mK
L = general characteristic length, m
m = combination parameter
n = outward facing normal vector
Q = total heat flow rate, W
R = thermal resistance, K/W
r = general radial coordinate
S = conduction shape factor, m
S�

L = dimensionless conduction shape factor, SL/Ai

s = cube side length, m
T = temperature, ◦C
V = enclosed volume, m3

x, y, z = Cartesian coordinates
δ = gap spacing, (do − di )/2, m
ρ = local radial position, m
φ, θ = spherical coordinates
ψ = dimensionless temperature rise

Subscripts

e = effective
i = inner
o = outer
∞ = full-space limit

Introduction

A NALYTICAL models for conduction shape factors for three-
dimensional regions formed between an arbitrarily shaped,
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heated body and its surrounding, cooled enclosure are of interest
to thermal designers of sealed enclosures for microelectronics ap-
plications. Analytical heat transfer models can be used to predict
quickly and accurately operating temperatures of circuit boards and
components in the enclosure, providing a tool for parametric stud-
ies and tradeoff analyses during the preliminary design process. An
important step in the formulation of natural convection models for
these applications is the development of conduction models in the
enclosed region.

The problem of interest in the current study involves steady-state
conduction in the isotropic region bounded by concentric, arbitrarily
shaped isothermal boundaries, as shown in Fig. 1. Geometries ex-
amined include enclosed regions between similar body shapes with
constant or near-constant gap thickness, as well as enclosures with
different inner and outer boundary shapes.

Numerical data are available in the literature for steady-state con-
duction for a limited set of enclosure geometries. Hassani1 presents
data for the concentric circular cylinders and the concentric base-
attached cones for a wide range of gap spacing. Warrington et al.2

present numerical data for enclosures formed between different con-
centric boundary shapes for two cases: the cube in a spherical en-
closure and the sphere in a cubical enclosure.

The only analytical model for the conduction shape factor in the
literature is presented by Hassani and Hollands3 for the dimensional
shape factor S for three-dimensional enclosure geometries with uni-
form gap spacing,

S = (
Sm

0 + Sm
∞
)1/m

(1)

where S∞ for the sphere is used to approximate all body shapes

S∞ = 3.51
√

Ai

and S0 is approximated based on one-dimensional heat transfer

S0 = Ai/δ

where δ is the minimum value of the gap spacing. The blended com-
bination in Eq. (1) reduces to linear superposition, m = 1, for the
concentric spheres. However, for boundary shapes where corners
are present, such as the concentric cubes, a combination parameter
value m > 1 is introduced. The values for m are dependent on ge-
ometry and are determined from a correlation of numerical data as
a function of the inner body surface area, aspect ratio, and the en-
closed volume. The model is restricted to enclosed regions formed
between geometrically similar boundary shapes, such that the gap
spacing is uniform. There are currently no analytical models avail-
able in the literature that address the problem of conduction for an
enclosure with a nonuniform gap spacing.
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Fig. 1 Schematic of physical
problem.

The objective of the current study is to develop analytical mod-
els for the conduction shape factor for the general case of enclo-
sures formed between two arbitrarily shaped, isothermal boundaries.
These models will be validated using the available numerical data
from the literature, as well as data from a commercial computational
fluid dynamics (CFD) package for a variety of different boundary
shapes.

Problem Definition
The conduction shape factor S is defined by Yovanovich4 for an

isolated, three-dimensional body shape based on an area integral of
the temperature gradient along an outward facing normal n from the
body surface,

S =
∫

Ai

∫
− ∂ψ

∂n

∣∣∣∣
Ai

dAi (2)

For the particular problem of the three-dimensional enclosure
formed between a heated inner and cooled outer boundary, the in-
tegral is evaluated at the inner surface Ai where the dimensionless
temperature rise ψ is defined as

ψ = [T (r) − To]/(Ti − To) (3)

The shape factor is nondimensionalized using the general scale
length L , as follows:

S�
L = SL

Ai
= L

Ai

∫

Ai

∫
− ∂ψ

∂n

∣∣∣∣
Ai

dAi (4)

The dimensionless shape factor is related to the thermal resistance
R and total heat transfer rate Q by

S�
L = L

k Ai R
= QL

k Ai (Ti − To)
(5)

The square root of the inner body surface area is selected as the
characteristic length, L = √

Ai , such that

S�√
Ai

= 1
/

k
√

Ai R = Q
/[

k
√

Ai (Ti − To)
]

(6)

Figure 2 presents the range of different inner body shapes examined
in this work and shows the notation used to describe each of the
dimensions. Similar notation is used for the dimensions of the outer
boundary shapes.

Model Development
The concentric spherical enclosure is a fundamental case of three-

dimensional enclosures, where the thermal resistance can be deter-
mined using the expression presented in most heat transfer texts,5

R = (1/2πk)(1/di − 1/do) (7)

Using Eq. (6) to relate the resistance to the dimensionless conduction
shape factor gives

S�√
Ai

= 1

k
√

Ai R
= 2

√
π

(1 − di/do)
(8)

Fig. 2 Inner and outer boundary shapes.

However, the asymptotic characteristics of the shape factor solution
for small and large values of aspect ratio di/do can be demonstrated
more effectively by introducing the gap thickness δ, defined as

δ = (do − di )/2 (9)

Substituting do = di + 2δ into the expression for thermal resistance
gives

R = δ/πkdi (di + 2δ) (10)

The corresponding dimensionless shape factor expression is

S�√
Ai

= 1
/

k
√

Ai R = 1
/

k
√

πdi · πkdi (di + 2δ)/δ

= √
πdi

/
δ + 2

√
π (11)

This formulation for S�√
Ai

is a linear superposition of two limiting
cases. For small values of gap spacing with respect to the inner body
diameter, δ/di , the first term in Eq. (11) is dominant, corresponding
to one-dimensional planar resistance. For large δ/di , S�√

Ai
tends to a

constant value corresponding to the dimensionless conduction shape
factor for a sphere in a full-space region.

When it is noted that the numerator of the first term in Eq. (11)
corresponds to

√
Ai for the sphere, a general model for dimen-

sionless conduction shape factor for three-dimensional enclosures
is proposed based on the exact solution for the concentric spheres,

S�√
Ai

= (√
Ai

/
δe

) + S�
∞ (12)

where S�
∞ is the conduction shape factor for the inner body in a

full-space region. Models, tabulated values, and correlations for S�
∞

are available for a variety of body shapes in technical publications
or handbooks.4

Effective Gap Spacing
The effective gap spacing in Eq. (12), δe, is an exact value in the

case of enclosures with uniform gap thickness, such as the concen-
tric spheres. However, for enclosures with different inner and outer
boundary shapes or boundaries with sharp corners, approximate
models are required to predict δe. In the proposed research study,
two different models for the effective gap spacing are developed.

For certain geometries, it is possible to calculate the local gap
thickness as a function of the angular position in spherical coordi-
nates, where the origin is concentric with the inner and outer bound-
aries. For the particular example of a cube in a spherical enclosure,
local gap thickness δ(φ, θ) is determined by

δ(φ, θ) = (do/2) − ρi (φ, θ) (13)

where ρi (φ, θ) maps one-quarter of the x = si/2 face of the cube in
spherical coordinates, as shown in Fig. 3,

ρi (φ, θ) = (si/2)

sin φ cos θ

0 ≤ θ ≤ π

4
, tan−1 sec θ ≤ φ ≤ π

2
(14)
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Fig. 3 Cube surface definition in
spherical coordinates.

The mean value for the effective gap spacing is determined by an
area integration in spherical coordinates over the outer boundary
Ao:

δe = 24

πd2
o

∫ π/4

0

∫ π/2

tan−1 sec θ

δ(φ, θ)
d 2

o

4
sin φ dφ dθ (15)

The integral is solved numerically to determine δe for different com-
binations of do and si .

For certain combinations of boundary shapes, it may be difficult
to define the local gap thickness as a mathematical function that
can be integrated in the manner described. In this case, an alternate
approximate modeling technique called the two-rule method has
been developed by the authors. In this method, the effective gap
spacing is determined from the equivalent spherical enclosure in
which the surface area of the inner boundary and the volume of the
enclosed region are preserved. The diameter of the equivalent inner
sphere is found by

di =
√

Ai/π (16)

The diameter of the equivalent outer spherical boundary is related
to the volume of the inner body Vi and the total enclosed volume V
by

do = [6(V + Vi )/π ]
1
3 (17)

The volume of the inner sphere is related to its area by

Vi = (π/6)d3
i = A

3
2
i

/
6
√

π (18)

The effective gap spacing is determined by

δe = do − di

2
= 1

2

[(
6V

π
+ A

3
2
i

π
3
2

) 1
3

−
(

Ai

π

) 1
2
]

=
√

Ai

2
√

π

[(
6
√

π
V

A
3
2
i

+ 1

) 1
3

− 1

]
(19)

Conduction Shape Factor
Given these two methods for calculating the effective gap spacing,

the conduction shape factor can be determined based on Eq. (12).
For the integral method, the conduction shape factor is

S�√
Ai

= (√
Ai

/
δe

) + S�
∞ (20)

where δe is determined based on a numerical solution to the integral,
where necessary. In the case of the two-rule model, δe from Eq. (19)
can be substituted into Eq. (12) to yield

S�√
Ai

= 2
√

π
[
1 + 6

√
π
(
V

1
3
/√

Ai

)3] 1
3 − 1

+ S�
∞ (21)

where the dimensionless independent parameter V 1/3/
√

Ai is se-
lected to match the order of the terms appearing in the general
model, Eq. (12). In cases involving geometrically similar boundary

shapes, such as the concentric cubes or cylinders, the lower limit on
the independent parameter is V 1/3/

√
Ai → 0, where the conduction

shape factor approaches infinity as the inner and outer boundaries
come into contact. However, when the inner and outer boundary
shapes are different, the lower limit on V 1/3/

√
Ai is a finite, nonzero

value. For the example of a sphere in a cubical enclosure when the
diameter of the inner sphere di equals the side length of the cube so,
the total enclosed volume and independent parameter values are

V = s3
o − (π/6)d3

i ≈ 0.476s3
o , V

1
3
/√

Ai ≈ 0.441

As a result, the limit of S�√
Ai

→ ∞ occurs when V
1
3 /

√
Ai → 0.441

for the sphere in a cubical enclosure.

Model Application and Validation
To validate the conduction shape factor models for a variety of

inner and outer boundary configurations, the following test cases
are presented.

Geometrically Similar Boundary Shapes
Three different configurations of enclosures with geometrically

similar boundaries are examined: concentric cubes, concentric cir-
cular cylinders, and concentric base-attached double cones. For each
configuration, the ratio of the inner to outer boundary dimensions
are varied such that the range of the independent parameter is

0.2 ≤ V
1
3
/√

Ai ≤ 5

The conduction shape factor S�√
Ai

is determined using the two-rule
model, Eq. (21), as a function of the boundary dimensions defined
in Fig. 2.

Concentric Cubes

V = s3
o − s3

i , Ai = 6s2
i

S�√
Ai

= 2
√

π
{

1 + (√
π/6

)[
(so/si )3 − 1

]} 1
3 − 1

+ S�
∞ (22)

where the conduction shape factor for the isolated cube in a full-
space domain is4

S�
∞ = 3.391

Concentric Circular Cylinders, h/d = 1

V = π

4

(
d2

o ho − d2
i hi

)
, Ai = 2

(
π

4
d2

i

)
+ πdi hi

S�√
Ai

= 2
√

π
{

1 + (
2
/√

6
)[

(do/di )3 − 1
]} 1

3 − 1
+ S�

∞ (23)

where S�
∞ is calculated by4

S�
∞ = 3.1915 + 2.7726(hi/di )

0.76

√
1 + 2hi/di

= 3.443 (24)

Concentric Base-Attached, Double Cones, h/d = 1

V = π

12

(
d2

o ho − d2
i hi

)
, Ai = 2

[
π

4
di hi

]

S�√
Ai

= 2
√

π
{

1 + √
2[(do/di )3 − 1]

} 1
3 − 1

+ S�
∞ (25)
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Fig. 4 Geometrically similar boundary shapes.

where S�
∞ is determined from the correlation,4

S�
∞ = 3.1943 + 0.6266

hi

di
− 0.4778

hi

di

2

+ 0.0751
hi

di

3

+ 0.0532
hi

di

4

= 3.471 (26)

In Fig. 4, the model predictions for each of these enclosure con-
figurations are compared with numerical data from Hassani1 for
the cylinders and base-attached double cones and from Warrington
et al.2 for the concentric cubes, as well as for the exact solution for the
concentric spheres. Figure 4 demonstrates the excellent agreement
between the two-rule model and the data, with an rms difference
of 2.8% for the concentric cubes and a difference of less than 1%
rms for both the cylinders and double cones. The use of V 1/3/

√
Ai

as the independent parameter and the square root of the inner body
surface area as the scale length has effectively collapsed all of the
data and models to a single curve.

Cube in Spherical Enclosure
The conduction shape factor for the region formed between a

cube and a concentric, spherical enclosure is modeled using both
the two-rule and integral methods. The ratio of the inner to the outer
boundary dimensions are varied over a range corresponding to the
available data from Warrington et al.,2

0.5 ≤ V
1
3
/√

Ai ≤ 2

When the two-rule model is used, the effective gap spacing δe and the
dimensionless conduction shape factor S�√

Ai
are determined using

Eqs. (19) and (20),

V = π

6
d3

o − s3
i , Ai = 6s2

i

δe = si

2

{[(
do

si

)3

+ 6
(√

6 − √
π
)

π
√

π

] 1
3

−
√

6/π

}
(27)

S�√
Ai

= 2
√

π
{
1 + (

π
√

π
/

6
√

6
)[

(do/si )3 − 6/π
]} 1

3 − 1
+ 3.391 (28)

Because the geometry of both the spherical and cubical bound-
aries can be expressed in spherical coordinates, the integral method
can also be used in this case. As described by Eqs. (13) and (14),
the local gap thickness can be determined as a function of angular
position, and the effective gap spacing is determined from an area

Fig. 5 Cube in spherical enclosure.

average over the outer, spherical boundary. The integral shown in
Eq. (15) can be partially evaluated to the following expression:

δe = si

2

[
do

si
− 3 ln

(
1 +

√
2
)] + 3si

π

∫ π/4

0

tan−1 sec θ

cos θ
dθ (29)

which can be evaluated numerically to give

δe = si

[
1
2 (do/si ) − 0.6107

]
(30)

The conduction shape factor for the integral method is determined
by substituting Eq. (30) into the general model for S�√

Ai
, Eq. (20).

Figure 5 compares the predictions of the integral and two-rule
models with numerical data from Warrington et al.2 The ratio of the
diameter of the spherical enclosure and the cube side length, do/si ,
is also plotted vs V 1/3/

√
Ai on the second y axis. There is good

agreement between both models and the data; however, the integral
model provides a better fit of the data than the two-rule model,
within 3% rms difference over the full range of the dimensionless
gap spacing.

Sphere in Cubical Enclosure
For the sphere contained with a concentric cubical enclosure,

both the two-rule and integral methods for predicting δe and S�√
Ai

are compared with the existing numerical data. Applying the two-
rule model to this case gives the following:

V = s3
o − π

6
d3

i , Ai = πd2
i

δe = di

2

[(
6

π

) 1
3
(

so

di

)
− 1

]
(31)

S�√
Ai

= 2
√

π
[
(6/π)

1
3 so

/
di − 1

] + 2
√

π (32)

For the integral method analysis, the effective gap spacing is deter-
mined based on an area average on the inner spherical surface by
interchanging do with di in Eq. (15), where δ(φ, θ) is

δ(φ, θ) = so/2

sin φ cos θ
− di

2
, 0 ≤ θ ≤ π

4

tan−1 sec θ ≤ φ ≤ π

2
(33)

Partial evaluation of the integral gives

δe = 3so

2
ln

(
1 +

√
2
) − 3so

π

∫ π/4

0

tan−1 sec θ

cos θ
dθ − di

2
(34)
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Fig. 6 Sphere in cubical enclosure.

Evaluating the integral numerically yields

δe = di

[
0.6107(so/di ) − 1

2

]
(35)

Figure 6 compares the S�√
Ai

data of Warrington et al.2 with both
the two-rule and integral models, as well as the ratio so/di , as a
function of V 1/3/

√
Ai . The agreement between the models and data

is not as good as for the cube in a spherical enclosure; however,
for V 1/3√Ai > 1, corresponding to so/di > 2, the rms difference
between both models and the data is less than 5%. The error becomes
more significant for smaller gap spacing, where the diameter of the
inner sphere approaches that of the outer boundary, leading to a local
increase in heat transfer that is not accounted for in the model.

Cuboid in Cubical Enclosure
In the next test case, the conduction shape factor for a cuboid with

dimensions a, b = 3.785a, and c = 2.175a in a concentric cubical
enclosure is modeled. Because of the complexity of formulating
the limits on the integration for each of the faces of the cuboid,
the integral method will not be used in this example. The two-rule
model is applied as follows:

V = s3
o − abc, Ai = 2ab + 2ac + 2bc

V
1
3√
Ai

=
(
s3

o

/
abc − 1

) 1
3

√
2(abc)

1
3 (1/a + 1/b + 1/c)

(36)

S�√
Ai

is calculated using Eq. (20), where S�
∞ is calculated using the

model presented by Yovanovich4 and Culham et al.6 for the cuboid,
which gives S�

∞ = 3.469.
The model is compared to numerical data from simulations per-

formed using FLOTHERM,7 a commercial finite volume based CFD
package. Full details of the numerical procedure, including a grid
convergence study, are given in the Appendix. The predictions of the
two-rule model are compared with the numerical data in Fig. 7. As in
the preceding case, there is good agreement between the model and
the data for values of V 1/3/

√
Ai > 1, corresponding to so/b > 1.5,

with an rms difference of less than 3%. A more significant error
occurs when V 1/3/

√
Ai < 1, where the longest dimension of the

cuboid approaches the side length of the enclosure, so/b < 1.4. The
local increase in the heat transfer caused by the close proximity of
these surfaces is not accounted for in the model.

Cylinder in Cubical Enclosure
The final test case involves a circular cylinder, hi/di = 0.5, in

a cubical enclosure. The two-rule model formulation for S�√
Ai

is

Fig. 7 Cuboid in cubical enclosure.

Fig. 8 Cylinder in cubical enclosure.

developed as follows:

V = s3
o − π

4
d2

i hi , Ai = 2

(
π

4
d2

i

)
+ πdi hi

V
1
3√
Ai

=
√

2

π

[
(so/do)

3 − (π/4)(hi/di )
] 1

3

√
2hi/di + 1

(37)

Equation (20) is used to determine S�√
Ai

, where S�
∞ is calculated for

hi/di = 0.5 using Eq. (24).
The model predictions are validated using numerical results from

simulations performed using FLOTHERM, as described in the Ap-
pendix. Figure 8 demonstrates the good agreement between the
model and the data, within 2% rms for V 1/3/

√
Ai > 0.8, correspond-

ing to so/di > 1.5. The maximum difference of 10% occurred when
the diameter of the cylinder approaches the dimensions of the en-
closure, so/di = 1.3.

Summary
A general model has been presented for conduction shape fac-

tors between an arbitrarily shaped, isothermal inner body and its
surrounding, isothermal enclosure based on the exact solution for
the concentric spheres. The model requires an effective value of the
gap spacing, and two approaches for determining δe, the integral
method and the two-rule method, have been developed. The inte-
gral method provides better agreement than the two-rule method
with the available numerical data; however, its use is limited to ge-
ometries where the local gap thickness and integration limits can be
expressed mathematically. The two-rule method is a general model,
applicable in all cases where the enclosed volume and inner body
surface area can be determined.

The agreement between the two-rule model and the numerical
data is excellent for all enclosures with geometrically similar bound-
ary shapes, within 1–3% rms difference in all cases examined in this
work. The two-rule model is also effective in accurately predicting
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S�√
Ai

for enclosures with different inner and outer boundary shapes,
with an rms difference of 3–5% in all cases when V 1/3/

√
Ai > 1.

The model is less accurate for certain geometries, such as the sphere
in a cubical enclosure, and the ratio of the smallest outer body di-
mension to the largest inner body dimensions, that is, so/di , can be
used to indicate the range of application of the model. In all cases,
the accuracy of the two-rule model is significantly reduced when
the corresponding ratio of outer and inner dimensions is less than
1.5. In these situations, numerical simulation may be required to
determine accurately the conduction shape factor.

Appendix: Numerical Simulations
All numerical data for the cuboid-in-cube and cylinder-in-cube

enclosures were calculated using FLOTHERM,7 a commercial fi-
nite volume-based CFD software package. The CFD modeling is
performed in a three-dimensional domain, and the mode of heat
transfer is limited to conduction only. The software uses an orthog-
onal grid in Cartesian coordinates and is well suited to problems
involving cubes and cuboids; however, FLOTHERM also includes
angled plates that are used to create complex objects, such as the
circular cylinder.

The models for the cuboid and the cylinder are simplified by as-
suming one-eighth symmetry, with adiabatic boundary conditions
imposed at all symmetry (x = 0, y = 0, and z = 0) boundaries and
isothermal boundary conditions at all outer boundaries, To = 25◦C.
The surface of the inner body is treated as an isothermal boundary
condition, Ti = 50◦C. To vary the aspect ratio of the enclosure, the

Fig. A1 Grid convergence results for cylinder in cubical enclosure.

inner boundary dimensions are changed, whereas the outer bound-
ary is held constant. A constant value for the thermal conductivity,
k = 0.0261 W/mK, is specified for the region between the source and
the outer boundary. The software automatically calculates the total
heat flow rate crossing the inner boundary based on an area-weighted
sum of the fluxes calculated from the local temperature gradient.

Grid independence was verified for the cylinder-in-cube configu-
ration for the test case di = 60 mm, hi = 30 mm, and so = 134 mm.
The total heat transfer rate is plotted as a function of the number of
control volumes in Fig. A1.

The grid convergence study demonstrates that the use of approx-
imately 200,000 control volumes for the simulation results in a so-
lution for Q that is independent of the number of grid points. All
subsequent numerical simulations were performed using the same
level of mesh refinement.

The results of the FLOTHERM simulations are expressed in terms
of the total heat transfer rate for the one-eighth symmetry problem,
Q1/8. To compare these data with the model predictions, the follow-
ing nondimensionalization is performed:

S�√
Ai

= 8(Q1/8)
/

k
√

Ai	T

where values of k and 	T = Ti − To are given earlier and
√

Ai is
the square root of the total inner boundary surface area.
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