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An isotropic local mesh refinement technique for unstructured meshes is presented. The present work
pertains to inviscid, steady, supersonic internal flows contained in a channel configuration. A density-
based mesh refinement sensor function is used to identify regions in the mesh for refinement. A face-
cell finite-volume method, permitting dynamic changes to mesh connectivity, is employed in the mesh
refinement strategy. The AUSMþ convection scheme is used to compute the interface numerical flux
using Mach number and pressure splitting functions. The present method is capable of recursive multi-
level mesh adaption. Local mesh refinement equivalent to 64 and 256 times the coarse mesh resolution
can be obtained using four and five levels of refinement, respectively. Results for two popular
supersonic channel test cases are presented: Mach 1.4 flow over a 4% thick circular arc bump, and Mach
2.0 flow over a 108 compression ramp. The effort associated with the mesh refinement of the bump case
accounts for only 4.6% of the total simulation time. For the ramp case, a factor of 4.2 for memory
storage requirements and 7.7 for simulation time is required to obtain an equivalent uniform fine mesh
solution.
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NOMENCLATURE

a speed of sound

A area of a cell

CFL Courant–Friedrichs–Lewy

stability number

E total energy per unit mass

F inviscid flux vector

K iteration number

L, R left and right states

m cell neighbour index

M Mach number

M AUSMþ Mach number

splitting function

~n unit vector normal to cell face

p pressure

P AUSMþ pressure splitting

function

Q vector of conservative

variables

S face length

t time

u, v Cartesian velocity components
~V velocity vector

Vn convective velocity normal

to cell face

x, y Cartesian coordinates

r density
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INTRODUCTION

Local mesh refinement involves the addition of smaller

cells in regions of high gradients in the solution. This

technique is used to locally improve the spatial accuracy

of a numerical solution. For compressible flows, the target

of local mesh refinement is typically a shock wave, or

other discontinuity. As the refinement of cells is based on

the solution itself, these methods are called solution-

adaptive, or adaptive mesh refinement (AMR) techniques.

The method developed in the present work is a multi-level

recursive algorithm applicable to unstructured triangular

meshes.

Supersonic channel flows typically contain complex

shock patterns which are governed by changes in cross-

sectional area such as converging/diverging walls, bumps,

ramps and sharp corners. These geometries are useful for

studying inviscid high-speed flows, and are ideal for

testing local mesh refinement strategies because of the

complex shock reflections that divide regions of smooth

gradients. In this work, mesh adaption techniques are

presented for 2D unstructured triangular meshes. Channel

configurations for a compression/expansion ramp and a

circular arc bump are computed. The bump flow is used to

demonstrate the AMR method and refinement time

distribution; the ramp test case is used to validate the

results as compared to an equivalent uniform fine mesh

solution.

GOVERNING EQUATIONS

The governing equations used to model an inviscid

compressible flow are the time-dependent Euler equations,

which represent a system of conservation laws for mass,

momentum and energy. In vector divergence form, the

Euler equation is:

›Q

›t
þ 7·½FðQÞ� ¼ 0 ð1Þ

The variable Q is a column vector of conservative flow

variables and F is the inviscid flux vector:

Q ¼

r
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where r is the fluid density, u and v are the Cartesian

velocity components, E is the total energy per unit mass

and p is the pressure. For unstructured meshes, the normal

vector is frequently used: nx and ny are the components of

the outward unit normal vector, and Vn is the convective

velocity normal to the face. The equation of state for an

ideal gas is used to close the system of equations.

DATA STRUCTURE AND MESH

Two-dimensional unstructured triangular meshes have

been used in the present work. A method of generating the

initial mesh for solution-adaptive mesh refinement is a

prerequisite. In addition, a flexible computational data

structure, capable of describing the cell connectivity and

which permits the dynamic addition of refined cells, is

required.

Initial Mesh

The initial triangular mesh for the ramp test case was

generated using Mesh2D (Niceno, 2001) and the coarse

mesh for the bump test case was created using EasyMesh

(Karamete, 2001). The Mesh2D and EasyMesh programs

are available on the Internet for academic use. These grid

generators produce high quality triangular meshes with

the Delaunay property. The initial meshes are somewhat

coarse, and are uniform in the region where mesh

refinement is anticipated.

Flexible Data Structure

The components of the mesh and their connectivity are

read from a mesh input file and are stored using several

different techniques. The vertices are stored in a vector

which is the symbolic equivalent of an array. The vector

has the benefit of allowing direct access to the vertex data

(coordinates, identification number, etc.) through the

vector index number. Unlike an array which requires the

size to be predefined and must address a contiguous piece

of memory, the vector can be resized and appended

dynamically.

The faces and cells in the mesh are stored in a linked-list

data structure. Since the connectivity of the vertices, faces

and cells is intertwined, the use of the linked-list permits

cross-referencing using the memory address of individual

objects. For example, each face has memory pointers to its

two vertices and its two neighbour cells. The linked-list

is also a suitable choice for the faces and cells since

the solver loops through these objects during each

iteration.

Each cell contains an array of pointers to its vertices,

faces, and neighbours. These arrays are variable in length

such that they describe cells with two forming points, as in

ghost cells used on boundaries, three forming points for

triangular cells, or more at mesh refinement interfaces.

The freedom to dynamically increase the number of

neighbouring cells allows for adaptive mesh refinement

where a cell can be subdivided into smaller cells to

increase the resolution of the solution.

The face-based solution method first loops through each

face in the linked-list and computes the numerical flux

based on the left and right states. The flux is stored at the

cell centres of the left and right cells. The Gauss-Siedel

point solver then loops through the linked-list of cells and

explicitly solves for the conservative variables based on
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the sum of the fluxes entering and exiting through its

bounding faces. Iteration is performed until the residuals

have been sufficiently decreased and the solution has

converged. The numerical method for computing the

fluxes is described in detail in the next section.

NUMERICAL METHOD

The conservative flow variables are stored at the cell

centroids, and are assumed to be piece-wise

constant within the cell. The flux vector is split using

the AUSMþ flux vector splitting scheme (Liou, 1996;

Liou and Singh, 1999), outlined as follows.

First, a is the interface numerical speed of sound which

is taken as the arithmetic average of neighbouring left (L)

and right (R) states:

a ¼
aL þ aR

2
ð3Þ

The face-normal Mach numbers for the left and right

cells are:

MnL ¼
~VL·~n

a
; MnR ¼

~VL·~n

a
ð4Þ

The interface convective Mach number is determined

by using Mach number splitting functions (M^) based on

neighbouring Mach numbers,

Mn ¼ MþðMnLÞ þM2ðMnRÞ ð5Þ

The Mach number splitting functions (Liou, 1996) are:

M^ðMÞ

¼

1
2
ðM ^ jMjÞ; if jMj . 1

^ 1
4
ðM ^ 1Þ2 ^ 1

8
ðM 2 2 1Þ2; otherwise

8><
>: ð6Þ

The interface pressure is obtained with contributions

from the left and right states using pressure

splitting functions (P^) based on the neighbouring

Mach numbers,

p ¼ PþðMnLÞ·pL þP2ðMnRÞ·pR ð7Þ

The pressure splitting functions (Liou, 1996) are:

P^ðMÞ

¼

1
2
ð1^ signðMÞÞ; if jMj$ 1

1
4
ðM^1Þ2ð27MÞ^ 3

16
ðM 2 21Þ2; otherwise

8><
>:

ð8Þ

Full upwinding of both the pressure and Mach number

is achieved for supersonic flow; a polynomial blending

of the upstream and downstream contributions results

for subsonic conditions. The inviscid numerical flux

normal to the cell interface is then assembled using

Eqs. (5) and (7).

Fn ¼
1

2
a
�
MnðQL þ QRÞ2 jMnjðQR 2 QLÞ

�

þ p·½0 nx ny 0�T ð9Þ

The fluxes are applied to each cell in the mesh and the

solution to the conservative variables is advanced using an

explicit Gauss–Siedel point solver. For the mesh

refinement test cases, a first-order implementation of the

fluxes was used,

Qkþ1 ¼ Qk 2
Dt

A

X3

m¼1

Fn;mSm ð10Þ

where Sm is the face length of face m. The timestep used to

advance the solution in Eq. (10) is computed using

Dt ¼
CFL·Smin

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v 2

p
þ aj

ð11Þ

where Smin is the characteristic length scale which is taken

as the face length for equilateral or low-aspect-ratio

triangular cells, and an appropriate choice of CFL number

is used to ensure stability. The CFL number is the ratio of

timestep to characteristic convection time, and must be

less than unity for stability.

LOCAL MESH REFINEMENT STRATEGY

Solution-adaptive mesh refinement requires a test criterion

to determine regions in the mesh to refine, and an algorithm

to subdivide the mesh to improve the local resolution.

An optimal mesh criterion is not required, as multiple

levels of mesh refinement are applied until the maximum

number of mesh refinement levels have been achieved.

Cell Division Options

Figure 1 shows three simple cell division options whereby

a triangular control volume is subdivided into two, three

and four smaller triangles, referred to as bilateral, trilateral

and quadrilateral cell division, respectively.

Both the bilateral and trilateral cell division options

produce smaller triangular cells which have an increased

aspect ratio from that of the original cell. These cell

division options are therefore anisotropic. Under succes-

sive cell division, anisotropic refinement methods can

produce low quality cells that may only have a marginal

improvement in solution resolution.

Isotropic refinement of a triangular cell is achieved using

quadrilateral cell division. Each triangle is divided into four
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congruent triangular cells, each having exactly one quarter

of the initial cell volume. The fine cells are created

by joining the bisection point of each face in the parent

cell, resulting in an inscribed cell and three corner cells,

as shown in Fig. 1. For the present isotropic mesh

refinement investigation, quadrilateral cell division is

used exclusively.

Solution redistribution from the coarse to the fine cells

is achieved by simply inheriting the flow variables from

the parent cell.

Test Criterion

The sensor function used herein was adopted from

Rivara (1989) and Chen et al. (1997) as implemented by

Lien (2000). The sensor function is based on density

using an undivided difference or delta. For compressible

flow, a pressure-based sensor function is not suitable

as it will not detect contact discontinuities (slip lines).

For each cell in the mesh, a mesh refinement sensor

function (Lien, 2000) was computed based on neigh-

bouring cells,

funcðfÞf¼r ¼
X3

m¼1

jro 2 rmj ð12Þ

where o is the cell under consideration and m is the cell

neighbour index. Cells in the mesh should be tagged for

local refinement only if the following criterion is met:

funcðfÞ . funcðfÞmin þ ratio
�
funcðfÞmax

2 funcðfÞmin

�
ð13Þ

The adjustable ratio in Eq. (13), or mesh refinement

threshold, was determined empirically by trial and error,

and generally ranges from 5 to 10%. The marking of cells

for refinement requires two sweeps of the mesh—one to

determine the refinement criterion, and the second to test

each cell against the threshold value.

Refinement along Curved Geometry

In addition to improving spatial resolution in the mesh

volume, an increase in resolution of the geometry is

necessary. Figure 2 shows the refinement of a cell

adjacent to a curved boundary, where a simple

adjustment to the vertex location is employed. This

procedure is applicable when the radius of curvature is

much greater than the face length of a cell. Examples of

curved geometries include circular arcs, ellipses, and

airfoil cross sections.

Mesh Refinement Rules

Multiple levels of mesh refinement are possible with a

recursive algorithm. A numbering system is therefore

required to identify the current level of refinement and to

make reference to parent or children cells on different

levels. Further, several mesh refinement rules are required

to minimize weighting errors between coarse and fine

cells:

1. neighbouring cells cannot differ in refinement level by

more than one from the coarser cell; and,

2. a coarse cell cannot be surrounded by more than one

refined cell.

These rules prevent a number of undesirable features in

the mesh. Cell interfaces differing in refinement level by

more than one will result in numerous flux contributions

through relatively small faces, which will lead to local

solution degradation by diffusion of the solution at the

interface. Further, cells surrounded by more than one

FIGURE 2 Example of cell refinement along a curved boundary. Vertex V is moved to a point V0 which is interpolated along the curved boundary.

FIGURE 1 Options for refinement of a triangular cell (from top to
bottom): bilateral cell division, trilateral cell division and quadrilateral
cell division.
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refined cell, or cells differing in refinement level by more

than one, will create coarse cells formed by more than four

faces. This can complicate post-processing since most

readily available plotting utilities are designed exclusively

for 2D finite-volume data consisting of three- and four-

sided (triangular and quadrilateral) cells.

Mesh Refinement Procedure

The recursive mesh refinement procedure used for steady

flows is described. The mesh refinement process for a

given level is applied each time the RMS residual is

decreased below 1027 until the desired maximum number

of refinement levels is achieved. The governing

equations are iterated and partially converged for each

level of mesh refinement before applying a subsequent

level of finer cells.

The calculation of fluxes at mesh refinement interfaces

between fine and coarse levels is straightforward using the

present face-based method. Each coarse cell along the

interface is modified such that the face adjacent to a

refined cell is bisected into two new faces corresponding

to the two neighbouring refined cells. As shown in

Fig. 3, there are four fluxes contributing to the change in

conservative variables in cell C. The unstructured-grid

methods used in the code permit such modifications to the

cell and face connectivity data—a process that would be

difficult for some structured-grid methods with rigid data

structures.

Local timestepping was employed whereby each cell in

the mesh was advanced using the same timestep. A fixed

CFL number of 0.35 was used to calculate the local

timestep and the solution was then advanced using the

minimum timestep in the domain. This ensures that

stability is met at each timestep; however, as the cells

ar locally refined, the global timestep is reduced by a

factor of about two for each successive mesh refinement

level.

Multi-level Mesh Refinement

Multiple levels of mesh refinement are possible, using

so-called recursive or nested cell subdivisions. The parent/

child analogy is used to reference between refinement

levels. The relative number of cells on any given level can

be determined using the following relationship:

Ncells ¼ 4Level21 ð14Þ

For example, the fifth level mesh refinement contains

256 times the number of cells within a single triangular

cell on the coarsest mesh.

MESH REFINEMENT RESULTS

Supersonic Bump Test Case

The bump test case features a supersonic channel

flow with a circular arc bump placed along the lower

wall. The inlet Mach number is 1.4 and the circular bump

is 4% thick.

Figure 4 shows the convergence behaviour for the

supersonic bump simulation. Spikes in the residuals

are clearly evident, which correspond to refinement of

the mesh. The effect on the residuals by the addition

of refined cells indicates that the present method

employs a non-conservative interpolation between

mesh refinement levels. This convergence behaviour

is consistent with the results of de Zeeuw and Powell

(1993), who used Cartesian methods, and does not

impact the steady-state solution. Sun (1998) demon-

strated that a conservative interpolation method is

possible—this would allow the current mesh adaption

strategy to be extended to unsteady flows.

Distribution of Time Spent on Mesh Refinement Tasks

The distribution of mesh refinement tasks is shown in

Fig. 5. Mesh refinement tasks accounted for only 4.6% of

the total simulation time. Convergence was achieved on

the finest mesh in 1975 s using a Pentium III—500 MHz

CPU.

Refinement of cells involves cell division and

modifications to the connectivity data. The Grow Mesh

algorithm employs an isotropic advancing front method,

proposed by Lien (2000), that sequentially expands the

local refinement into the coarse mesh region. Growing

the mesh increases the refinement region size, but can

give rise to a problem called hanging cells, which are

coarse cells along the refinement interface that are

bounded by two or more refined cells. These hanging

cells are recursively refined until they are completely

removed. Miscellaneous tasks include: application of

refinement sensor function; setting face normal vectors,

face length, cell area, etc., for refined cells; interpolation

of fine mesh solution for parent (coarse) cells;

modification of boundary conditions; computing primi-

tive variables; and, estimating gradients in the refined

cells.

Figure 6 shows the intermediate steps during one level

of mesh refinement. A diagonalized quadrilateral mesh

was chosen for illustrative purposes. The solution is not

computed on the intermediate meshes.
FIGURE 3 Details of interface between coarse and refined cells (F, flux;
S, face length; V, vertex; C, cell).
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Figure 7 shows the initial and adapted meshes for the

bump test case, and the resulting pressure contours for the

coarse and level 4 meshes. The mesh adaption success-

fully captured the shock reflections, as well as the oblique

shock from the trailing edge of the bump. The pressure

contour plot illustrates very sharp resolution of the shock

waves in comparison to the coarse mesh solution. The

present results are in agreement with those of Lien (2000).

Supersonic Ramp Test Case

The supersonic ramp test case has an inlet Mach number

of 2.0. The ramp geometry consists of a 108 compression

ramp followed by a 108 expansion corner along the lower

channel wall.

The pressure coefficient plot in Fig. 8 shows that the

level 5 solution is nearly grid independent (compare

levels 4 and 5) and there is little benefit to further mesh

refinement considering the additional computational

effort. Refinement to level 6 would exceed the available

memory and was not attempted. Further, the increase from

level 4 to level 5 increased the simulation time from a

matter of minutes to the order of hours.

The execution time increases for each subsequent level

of refinement because the local timestep is reduced by a

factor of two since the characteristic cell size is reduced by

two, and the number of cells is increased locally by

a factor of four when using quadrilateral cell division.

The net effect is an increase in computational effort by a

factor of 8 for each level of mesh refinement. Local mesh

refinement somewhat alleviates this burden by selective

application of refined cells only to regions of interest, as

compared to uniform mesh refinement, which subdivides

every cell in the mesh.

Comparison to Uniform Fine Mesh

Table I summarizes the differences between simulations

with the 5-level local mesh refinement and a uniform mesh

equivalent to the level 5 mesh resolution. The level 5

resolution is equivalent to 256 times that of the coarse

mesh, which contains 1094 cells. The time and number of

iterations correspond to the time that convergence to

machine zero is achieved. The ramp test case was executed

on a 200 MHz Sun UltraSparcII CPU.

Figure 9 shows that the uniform mesh and the local

mesh refinement produce identical solutions for lower

wall pressure coefficient. Even the overshoot and

oscillations at x ¼ 1 are reproduced when using local

mesh refinement. Pressure contour plots are also very

similar.

Convergence histories (Fig. 10) show that the uniform

mesh required considerably fewer iterations to converge to

machine zero; however, each iteration was more time

consuming for the uniform mesh due to the additionalFIGURE 5 Distribution of time spent on mesh refinement tasks.

FIGURE 4 Convergence history for the 4-level mesh refinement of the Mach 1.4 flow past a 4% thick circular arc bump.
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cells. CPU time and memory requirements shown in

Table I demonstrate that the local mesh refinement

technique is superior.

Figure 11 shows the adapted mesh and pressure

contours for the ramp test case. For level 2, the entire

mesh above the ramp was refined because the coarse mesh

solution was excessively diffuse and was targeted by a

sufficiently relaxed sensor function. This is desirable since

it provides a refined region for the solution to evolve

where discontinuities can be differentiated from low

gradient regions. For level 5, the oblique shock reflection

pattern is clearly captured by the mesh refinement sensor

FIGURE 6 Illustration of intermediate mesh refinement steps. (a) Original unstructured mesh (5400 cells), (b) Cells targeted by sensor function have
been refined (7611 cells), (c) Mesh following isotropic expansion of the refinement region (10,158 cells) and (d) Final mesh after smoothing the interface
to remove hanging cells (10,314 cells).
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FIGURE 7 Mach 1.4 flow past a 4% thick circular arc bump on a channel wall illustrating meshes and isobar contour solutions (30 isobars for
0.458 , p , 1.478 with Dp ¼ 0.033). (a) Level 1 coarse mesh (3318 cells), (b) Level 1 initial isobar contour solution, (c) Level 4 adapted mesh (32,948
cells) and (d) Level 4 converged isobar contour solution.
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function. Further, the expansion fan at x ¼ 2 was also

targeted by the mesh refinement algorithm. The isobar

contours demonstrate crisp shock waves in the channel,

and a substantial increase in resolution over the level 2

results.

Comparison to Analytical Results

Analytical solutions to oblique shock waves, shock

reflections and Prandtl–Meyer expansion fans are

tabulated and graphed in many gas dynamics textbooks,

e.g. (John, 1984). The states computed in the supersonic

ramp test case were validated against analytical results up

to the point where the expansion fan interacts with the

reflected shock, after which the analytical solutions are no

longer valid. States 1–4, as indicated in Figure 11d, are

compared for Mach number, which is representative of all

the flow variables. In addition, the level 5 results were

identical to the uniform mesh results and are listed as the

numerical results. The comparison of analytical results to

the present numerical results is given in Table II.

The Mach numbers at the four state locations are in

excellent agreement with the analytical solutions. Further,

from the oblique shock relationships (John, 1984), the

oblique shock angle for Mach 2.0 flow past a 108 incline is

398. The present numerical results, which predicted an

oblique shock angle of 39.48, are also in close agreement

with the tabulated value. Note that the resolution of

the tabulated results is in Mach 0.05 intervals and angles

are interpolated to the nearest degree. Overall, the present

numerical results are within 1% of the analytical

predictions.

CONCLUSIONS

A multi-level recursive local mesh refinement strategy for

unstructured triangular meshes has been developed

for high-speed channel flows involving shock waves.

The method uses flux-vector splitting techniques with a

face-based solver. A mesh refinement sensor based on the

density solution successfully targeted shock wave

reflections and an expansion fan for local refinement.

Application of the present technique for steady flows in

three dimensions is possible within the present framework.

FIGURE 8 Pressure coefficient along lower ramp wall for each mesh
refinement level.

FIGURE 9 Comparison of lower wall pressure coefficient for adaptive
(259 points) and uniform (964 points) meshes.

FIGURE 10 Comparison of convergence histories (RMS residual for
continuity equation) for adaptive and uniform meshes.

TABLE I Performance comparison of AMR and uniform meshes

Measure AMR Uniform Factor

Cells 50,837 280,064 5.5
Memory 76 MB 319 MB 4.2
Time 3.4 h 26.3 h 7.7
Iterations 19,140 12,230 0.64
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Although only internal channel flows were considered

here, the current method is fully capable of computing

steady inviscid flows about external geometries.

The present method requires minor modifications,

including the addition of a de-refinement algorithm and

conservative interpolation, for extension to transient

simulations.
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