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Introduction: Plate Fin Heat SinksIntroduction: Plate Fin Heat Sinks

• Heat transfer enhancement for air
cooled applications:
– increase effective surface area
– decrease thermal resistance
– control operating temperatures

• Plate fin heat sinks:
– most common configuration
– convection in channels between fins
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Introduction: Slotted Fin Heat SinksIntroduction: Slotted Fin Heat Sinks

• Enhanced thermal performance:
– new thermal boundary layers

initiated at each fin section
– increase in average heat

transfer coefficient
– decrease in surface area

• Performance of slotted fin heat sinks
function of slot size and spacing

• Optimal slotted fin heat sink design balances
enhancement of h with reduction of A
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Introduction: Heat Sink SelectionIntroduction: Heat Sink Selection

• Heat sink selection depends on many factors:
– performance
– dimensional constraints
– available airflow
– cost

• Quick and accurate design tools are required:
– predict performance early in design
– perform parametric studies
– alternative to numerical simulations, experiments
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ObjectivesObjectives

• Develop analytical models for average heat
transfer rate for slotted fin heat sinks:
– laminar, forced convection flow
– full range of developing and fully-developed flow
– non-isothermal fins

• Perform experimental measurements to validate
proposed models:
– range of slot sizes and spacing
– inline and staggered slot arrangement
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Problem Definition: Slotted Heat SinksProblem Definition: Slotted Heat Sinks

• Uniformly sized and spaced slots in fins
– fins slotted from tip to baseplate
– fin sections connected only by baseplate

• Slot size and spacing described
by dimensionless parameters:

– pitch,

– width,

• Slot arrangement:
– inline
– staggered

( )10 ≤< LPLP

( )10 <≤ PSPS
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Problem Definition: Plate Fin Heat SinkProblem Definition: Plate Fin Heat Sink

• Array of N plates on a single, flat baseplate

• Baseplate assumptions:
– fins in perfect thermal contact

– isothermal
– adiabatic lower surface, edges

• Uniform velocity in all
channels with no bypass:
– shrouded heat sink
– with flow bypass model for un-shrouded heat sinks

• Heat sink modeled as N-1 parallel plate channels
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Problem Definition: Parallel Plate ChannelProblem Definition: Parallel Plate Channel

• Assume b << H
– 2D channel flow
– neglect baseplate, shroud effects

• Isothermal boundary conditions

• Reynolds number:

• Nusselt number:
ν
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Parallel Plate Channel ModelParallel Plate Channel Model

• Composite solution of 2 limiting cases
(Teertstra et al, 1999)
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Plate Fin Heat Sink ModelPlate Fin Heat Sink Model

• Fin effects included in heat sink model:
– high aspect ratio heat sinks for power electronics
– dense arrays of tall, thin fins
– increased surface area for convection
– efficiency reduced

• Fin efficiency:

• Assume adiabatic condition at fin tip:
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Plate Fin Heat Sink ModelPlate Fin Heat Sink Model

• Model Summary
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Slotted Fin Heat Sink - Model BoundsSlotted Fin Heat Sink - Model Bounds

• Complex problem where exact solution not possible
• Upper and lower bounds from plate fin heat sink model:
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Slotted Fin Heat Sink - Lower BoundSlotted Fin Heat Sink - Lower Bound

• No new boundary layers formed

• Modeled using equivalent fin length:

• Lower bound expressions:
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Slotted Fin Heat Sink - Upper BoundSlotted Fin Heat Sink - Upper Bound

• New thermal boundary layer formed at each fin
section with no upstream effects

• Modeled using equivalent fin length:

• Upper bound expressions:
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Experimental ApparatusExperimental Apparatus

• High aspect ratio,

• Various slot configurations

• Back-to-back arrangement

• Mounted in Plexiglas shroud

• Approach velocity measured
with hot wire anemometer

• Temperatures measured at 4 locations on baseplate

• Radiation losses measured in separate experiment

20≈bH LP PS Slots

0.059 0.54 inline

0.11 0.5 inline

0.22 0.5 inline

0.44 0.5 inline

0.22 0.5 staggered

0.44 0.5 staggered
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Experimental ResultsExperimental Results
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Model ValidationModel Validation
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Model ValidationModel Validation

• Arithmetic mean of bounds within 12% RMS of data
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Summary and ConclusionsSummary and Conclusions

• Models developed for upper and lower bounds for
slotted fin heat sinks

• Experimental data within bounds for full range of
test conditions

• Arithmetic mean of bounds predicts          within
12% RMS over range of test conditions

• Reliable optimization procedure cannot be
determined from the limited range of          values

• Additional study and data are required

bNu
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