#### APPROXIMATE MODELLING PROCEENES FOR RAPID ANALYSIS AND DESIGN

J. Richard Culham Department of Mechanical Engineering University of Waterloo



University of Water100



What is modelling? How can approximate modelling methods be used to understand thermal behaviour in electronics applications Modelling procedures: as applied to heat sinks

Other potential applications



# Modelling Alternatives

**Experimental Methods** - prototype testing - empirically-based correlations Numerical Methods - approximate the governing equations over a finite, discretized domain **Analytical Methods** - closed form solutions - approximate methods



# Why Use Approximate Methods?

Fast, accurate and easy to use
Minimal hardware requirements
Ideal for preliminary design studies
material selection
component selection and placement
trade-off studies
Optimization studies

Concurrent design



## **Perceived Limitations**

Limited range of applications Cannot be used for complex geometries Cannot be used with mixed or nonuniform boundary conditions Simplifying assumptions provide inaccurate solutions



# Modelling Approach





University of Water100



## Heat Sink Model

Plate fin heat sink
Natural convection
Vertical orientation
Isothermal
Steady state
Working fluid is air



University of Waterlo<sup>0</sup>

## **Modelling Procedure**



#### **Exterior Surfaces**



### **Interior Surfaces**





University of Waterloo

## **Total Composite Solution**





University of Water100

## Modelling Domain









## How Do We Use These Results?

dimensionless heat transfer coefficien dimensionless flow parameter

$$Nu_{b} = \frac{hb}{k_{f}} = \frac{Q}{\Delta T \bullet A} \bullet \frac{b}{k_{f}} \propto \frac{g\beta\Delta Tb^{3}}{\alpha\nu} \bullet \frac{b}{L} = Ra_{b}$$

If max.  $\Delta T$  changes what is the max. Q dissipated For a given  $Q \Rightarrow$  what is the max.  $\Delta T$  of the heat sin or the package junction

How do changes in geometry affect  $\Box \Delta T$  aged



#### **Future Work**

Goal: Develop a comprehensive model to find the best heat sink design given a limited set of design constraints

#### **Physical Design**

¥ heat sink type ¥ material ¥ weight ¥ dimensions ¥ surface finish

#### Thermal

¥ maximum volume ¥ boundary conditions

- ¥ max. allowable temp.
- ¥ orientation

¥ flow mechanism

#### Cost

¥ labour ¥ manufacturing ¥ material

#### **Standards**

¥ noise ¥ exposure to touch



University of Water100

#### Other Examples of Approximate Models

| Applications            | Asymptotic Limits    |                     |
|-------------------------|----------------------|---------------------|
| Heat & Mass Transfer    |                      |                     |
| 1 Boundary layer flow   | laminar              | turbulent           |
| 1 Channel flow          | fully developed flow | boundary layer flow |
| 1 External flow         | diffusion            | boundary layer flow |
| 1 Internal flow         | fully developed flow | developing flow     |
| 1 Enclosures            | diffusion            | boundary layer flow |
| 1 Transient conduction  | short time           | steady state        |
| 1 Radiation             | opaque               | transparent         |
| 1 Steady conduction at  | rarefied             | continuum           |
| nano-scales             |                      |                     |
| Moving Sources          | stationary           | fast moving         |
| Elasto-plastic contacts | elastic              | plastic             |



University of Water100



Approximate models offer superior speed of execution and ease of use over most conventional modelling methods
Analytical modelling can be used for a wide range of applications previously considered to be too complex



# The End



University of Water100