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• Introduction
– need for compact models
– various types of compact models

• Examples of Compact Models
– total resistance of multilayered substrates (vias)
– natural convection in vented enclosures 
– natural convection plate fin heat sink
– compact heat exchangers

• Concluding Remarks
• Future Directions
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Microelectronic System LevelsMicroelectronic System Levels
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Compact Modeling ApproachesCompact Modeling Approaches

• Scale analysis
• Non-dimensionalization
• Thermal resistance modeling
• Combining asymptotic analytical solutions
• Development of bounds
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Thermal Resistance Modeling ExampleThermal Resistance Modeling Example

R. C. Chu and R. E. Simons, 
Thermal Management Concepts 
in Microelectronic Packaging, 
1984, pp. 193 - 214.
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Why Not Always Use Detailed Models?Why Not Always Use Detailed Models?

• Detailed models have value because....
– predict local temperature distribution within packages
– allow designers to easily make parametric changes in model
– DELPHI has proposed that they be the starting point for the 

creation of compact models

• However, detailed models also...
– reveal internal (often proprietory) construction details of 

packages
– are computationally demanding due to large grid required

S. Shidore, Flomerics Inc., 
International Standards Committee Meeting, 1999.
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Compact ModelsCompact Models

• Compact models seek to capture the thermal 
behavior of the package accurately
– at pre-determined critical points (junction, case etc.) 
– by using a reduced set of parameters to represent the 

package

• These parameters need not have a one-to-one 
correspondence with the package physical structure

S. Shidore, Flomerics Inc., 
International Standards Committee Meeting, 1999.
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What is (was) DELPHI?What is (was) DELPHI?

• Project that proposed new methodologies for developing 
component computational models

• Ultimate Goal: to enable manufacturers to supply 
validated compact thermal models to end-users

• Results were:
– detailed model understanding of several package types
– 2 experimental systems (Double Cold Plate and Submerged 

Double Jet Impingement) for validation
– compact model networks for several package types
– a methodology to tie these together

S. Shidore, Flomerics Inc., 
International Standards Committee Meeting, 1999.
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Create a
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Compare Compact Model
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Create Equivalent of Resistance 
Network Model in User Tool

Model Parameters

Optimise Resistance Values 
by Minimizing Cost Function

Choose a Resistance
Network Topology

Detailed
Model

End User gets ...

Compact
Model

The DELPHI MethodologyThe DELPHI Methodology

S. Shidore, Flomerics Inc., 
International Standards Committee Meeting, 1999.
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Boundary Condition Independent Resistance Boundary Condition Independent Resistance 
NetworksNetworks

S. Shidore, Flomerics Inc., 
International Standards Committee Meeting, 1999.
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Network TopologiesNetwork Topologies

S. Shidore, Flomerics Inc., 
International Standards Committee Meeting, 1999.
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The Compact ModelsThe Compact Models

S. Shidore, Flomerics Inc., 
International Standards Committee Meeting, 1999.
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Examples of Compact ModelsExamples of Compact Models

• Total resistance of multilayered substrates (vias)
• Natural convection in vented enclosures 
• Natural convection plate fin heat sink
• Compact heat exchangers
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ThermalThermal ViasVias

• Analytical model for via networks
• Typical configuration of a 5-layer High Density 

Interconnect
• 5 copper layers separated by 5 polyimide layers
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Item Dimensions
( µm )

k
( W / mK )

Die 5080 x 5080 x 25 150
Thermal Epoxy 5 (thickness) 3.8
Die Attach Pad 6350 x 6350 x 5 310
Planarizing Layer 5 (thickness) 0.19
HDI Dielectric, Polyimide Layers 5 (thickness) 0.19
HDI Conductive Layers, Via Pads 5 (thickness) 386
Vias 35 O.D. x 28 I.D. x 5 386
Ceramic Substrate 1016 (thickness) 30
Grease Layer 25 (thickness) 0.8

Dimensions and Thermal ConductivitiesDimensions and Thermal Conductivities
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• configuration of the via island with 
respect to the die and the die attach pad 
locations

• provides the capability to compare the 
effectiveness of thermal vias, thermal 
wells and partial thermal wells

ThermalThermal ViasVias
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• typical via layout within a 
single via layer

• vias are staggered from one 
layer to the next 

• no vertical overlaps of vias 
occur through the layers

ThermalThermal ViasVias



Microelectronics Heat Transfer LaboratoryMicroelectronics Heat Transfer Laboratory
University of WaterlooUniversity of Waterloo

• plan view of a typical 4-layer via 
network

• numbers indicate the plane in which 
the via layer is located

• each plane has a 60 degree axis shift 
to avoid via overlap

ThermalThermal ViasVias
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Compact Model: ThermalCompact Model: Thermal ViasVias

• Isolate basic unit cell
• Model as a circular disk with an isoflux boundary
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Model ValidationModel Validation
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Natural Convection in Vented EnclosuresNatural Convection in Vented Enclosures

• Natural convection heat transfer for a parallel 
array of circuit boards in a vented enclosure

• Flow restrictions at inlet, outlet
• Solve for each channel:

board

board
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max

fluid

fluid
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Modeling ApproachModeling Approach

• Laminar natural convection between parallel 
plates

• Assumptions:
– 2D channel flow
– isoflux boundary 

conditions
– adiabatic boundaries at 

outer walls
– EMC screens at inlet, exit
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Composite Solution ProcedureComposite Solution Procedure

Composite Solution
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Model ValidationModel Validation

• Symmetrically heated, single channel
• EMC screens at inlet, outlet

M odel Exp. DataQ
(W / side)
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Tboard
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∆

5.25 100 0 22.5 15.7 22.2 14.7
5.25 62.8 4.3 25.0 20.1 26.4 18.5
4.0 49.2 8.2 22.2 19.2 23.5 18.0
4.0 38.4 14.8 24.4 22.0 26.9 21.1
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Air Cooled Electronic Heat SinksAir Cooled Electronic Heat Sinks

Plate Fin Pin Fin

Radial Fin
Specialty
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Microelectronics Heat Sink ApplicationMicroelectronics Heat Sink Application

M. M. Hussein et al., IEEE Semitherm
Symposium, 1991, pp. 117 - 122.
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● lower Rayleigh numbers
● thick boundary layers

● higher Rayleigh numbers
● thin boundary layers

Diffusion

Boundary Layer Flow

Exterior SurfacesExterior Surfaces
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• Churchill, 1977

Parallel Plates ModelsParallel Plates Models

• Elenbaas, 1941

fd - fully developed
dev - developing flow2=m
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● Elenbaas model with 
adjustment for end wall
● combined flow: developing 
+ fully developed

● open surfaces with 
energy migration

Channel Flow

Control Surface

Interior SurfacesInterior Surfaces
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Compact Model Limiting CasesCompact Model Limiting Cases
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Automotive Heat ExchangersAutomotive Heat Exchangers

• Forced convection, internal flow
• Solve for                 and  
• Requires and for wide range of Re, Pr

A. Bejan, Heat Transfer, 
Wiley, New York, 1993.

( )mP D,∆ ( )QT ,∆
f j
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System Geometry and Basic CellSystem Geometry and Basic Cell

Typical Turbulator Stip Geometry

Unit Cell for Compact Model
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Modeling ProcedureModeling Procedure

• Define system, sub-system and basic cell
• Derive force and energy balances for basic cell
• Develop models for three flow regimes:

– low Reynolds number (creeping) flow
– laminar flow
– turbulent flow

• Combine models using composite solution, valid for 
full range of Re

• Quantify combination parameters using experimental 
data
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Modeling ApproachModeling Approach

• Force balance

• Energy balance
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Modeling ApproachModeling Approach

• General form based on composite solution

where:
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low Reynolds number model (creeping flow)
laminar flow model
turbulent flow model
combination parameters Y. S. Muzychka and M. M. Yovanovich, HTD-

Vol. 364-1, 1999, pp. 79-90.
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Model ValidationModel Validation
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