Maple Tutorial 13:
Bessel's Equations
M.M. Yovanovich
TUTORIAL13.MWS
Bessel's Equations are some of the most important ordinary differential equations for science and
engineering applications.
> restart:
> with(DEtools):
Bessel Equation with parameter n.
> Besseln:= x^2*diff(y(x), x,x) + x*diff(y(x), x) + (x^2 - n^2)*y(x) = 0;
> solBesseln:= dsolve(Besseln, y(x));
Bessel Equations with parameters n = 0 and n = 1.
> deq0:= subs(n = 0, Besseln);
> sol0:= dsolve(deq0, y(x));
> deq1:= subs(n = 1, Besseln);
> sol1:= dsolve(deq1, y(x));
Bessel Equation with parameter n = 1/2.
> deq2:= subs(n = 1/2, Besseln);
> sol2:= dsolve(deq2, y(x));
Modified Bessel Equations with parameter n.
> modBesseln:= x^2*diff(y(x), x,x) + x*diff(y(x), x) - (x^2 + n^2)*y(x) = 0;
> solmodBesseln:= dsolve(modBesseln, y(x));
Modified Bessel Equations with parameters n = 0 and n = 1.
> mdeq0:= subs(n = 0, modBesseln);
> solm0:= dsolve(mdeq0, y(x));
> mdeq1:= subs(n = 1, modBesseln);
> solm1:= dsolve(mdeq1, y(x));
Modified Bessel Equation with parameter n = 1/2.
> deqm2:= subs(n = 1/2, modBesseln);
> solm2:= dsolve(deqm2, y(x));
This is an unusal way to represent the solution. Maple is confused. The solution should contain both hyperbolic
cosine and sine as shown below.
> solm2:= _C1*sinh(x)/sqrt(x) + _C2*cosh(x)/sqrt(x);
General Modified Bessel Equation with parameters .
>
genBesselEqn:= x^2*diff(y(x),x,x) + (1 - 2*alpha)*x*diff(y(x), x) +
(beta^2*gamma^2*x^(2*gamma) + (alpha^2 - n^2*gamma^2))*y(x) = 0;
> solgen:= dsolve(genBesselEqn, y(x));
The general modified Bessel equation and its solution reduce to numerous special cases.
> deqn1:= 4*x^2*diff(y(x),x,x) + 8*x*diff(y(x),x) + (x^4 - 3)*y(x) = 0;
> soldeqn1:= dsolve(deqn1, y(x));
The solution can also be written in the following form.
> soldeqn1:= x^(-1/2)*(_C1*BesselJ(1/2, x^2/4) + _C2*BesselJ(-1/2, x^2/4));
> simplify(%);
Maple has returned the same solution. The factors can be absorbed by the constants of integration.
Airy Equation.
> airy:= diff(y(x),x,x) + 9*x*y(x) = 0;
> solairy:= dsolve(airy, y(x));
The solution of the Airy equation can be written in the following form.
> solairy:= x^(1/2)*(_C1*BesselJ(1/3, 2*x^(3/2)) + _C2*BesselJ(-1/3, 2*x^(3/2)));
Maple has used as the second solution.