General Solution of Poisson Equation for Plane Wall, Long Solid Circular Cylinder and Solid Sphere

The general Poisson equation $\nabla^2 T = -\mathcal{P}/k$ with appropriate boundary conditions, and the general solution which is valid for the plane wall, long solid circular cylinder and solid sphere is presented below. The temperature is one-dimensional, ie T = T(u) where u represents the x- and r- coordinates in the plane wall, cylinder and sphere. The distributed volumetric heat sources \mathcal{P} and the thermal conductivity k are constant.

Differential Equation

$$\frac{1}{u^n}\frac{d}{du}\left(u^n\frac{dT}{du}\right) = -\frac{\mathcal{P}}{k}, \qquad 0 \le u \le b, \qquad n = 0, 1, 2$$

Boundary Conditions

$$u = 0, \quad \frac{dT}{du} = 0,$$
 symmetry condition

$$u = b, \quad \frac{dT}{du} = -\frac{h}{k} \left[T(b) - T_f \right]$$

The parameters in the previous equations are defined below for the three geometries.

Geometry	Plane Wall	$\operatorname{Cylinder}$	Sphere
u =	X	\mathbf{r}	r
b =	${f L}$	b	b
n =	0	1	2

Solution

Integrating once gives the temperature gradient:

$$\frac{dT}{du} = -\frac{\mathcal{P}}{k} \frac{u}{n+1} + \frac{C_1}{u^n}$$

with the first integration constant C_1 .

The second integration gives the temperature distribution:

$$T(u) = -rac{\mathcal{P}}{k} rac{u^2}{2(n+1)} + C_1 rac{u^{1-n}}{(1-n)} + C_2$$

with the second integration constant C_2 .

To satisfy the symmetry condition at u = 0, the first integration constant must be set to zero, i.e., $C_1 = 0$. The second boundary condition leads to the relation:

$$-rac{\mathcal{P}b}{k(n+1)} = -rac{h}{k}\left[-rac{\mathcal{P}b^2}{2k(n+1)} + C_2 - T_f
ight]$$

The previous relation gives the second constant of integration:

$$C_2 = T_f + rac{\mathcal{P}b}{h(n+1)} + rac{\mathcal{P}b^2}{2k(n+1)}$$

General Temperature Distribution

The general temperature distribution can be written as

$$T(u) - T_f = rac{\mathcal{P}}{2k(n+1)}(b^2 - u^2) + rac{\mathcal{P}b}{h(n+1)}, \qquad 0 \le u \le b$$

which is valid for n=0 (plane wall), n=1 (long solid cylinder), and n=2 (solid sphere).

Wall or Surface Temperature Drop

The temperature drop from the wall (or surface) to the fluid is obtained from the general solution by setting u = b and $T(b) = T_s$. Therefore we get

$$T_{
m s} - T_f = rac{{\cal P}b}{h(n+1)}$$

Centerline or Axis Temperature Drop

The temperature drop from the centerline or the axis where the maximum temperature occurs to the fluid is obtained from the general solution by setting u = 0 and $T(0) = T_{\text{max}}$. Therefore we get

$$T_{ ext{max}} - T_f = rac{\mathcal{P}b^2}{2k(n+1)} + rac{\mathcal{P}b}{h(n+1)}$$

Solid Temperature Drop

The temperature drop across the solid is

$$T_{
m max}-T_{
m s}=rac{{\cal P}b^2}{2k(n+1)}$$

Ratio of Solid to Film Temperature Drops

The ratio of the solid temperature drop to the film temperature drop is obtained from

$$\frac{\Delta T_{\rm solid}}{\Delta T_{\rm film}} = \frac{T_{\rm max} - T_{\rm s}}{T_{\rm s} - T_f} = \frac{1}{2} \frac{hb}{k} = \frac{1}{2} Bi$$

where Bi is the Biot number.