Natural Convection from Isothermal Spheres

M.M. Yovanovich

NCSPH3.MWS

Natural convection from isothermal spheres. Use the [Maple Math] correlation equation based on sphere diameter. Consider the problem where the heat transfer rate [Maple Math] is known along with the fluid, air, the ambient temperature [Maple Math] , and the sphere diameter. Calculate the sphere surface temperature [Maple Math] . The second problem finds the heat transfer rate, when the surface temperature is specified along with all other pertinent system parameters.

> restart:

Air properties correlation equations.

> k:= T->-.2571428571e-7*T^2+.9300000000e-4*T+.6685714286e-3:

> rho:= T->.8997142857e-5*T^2-.9361400000e-2*T+3.168594286:

> cp:= T->.4285714286e-6*T^2-.2260000000e-3*T+1.035857143:

> mu:=T->-.3000000000e-10*T^2+.6654000000e-7*T+.1200000000e-5:

> nu:=T->.1005714286e-9*T^2+.3444000000e-7*T-.3466857143e-5:

> alpha:=T->.1600000000e-9*T^2+.4480000000e-7*T-.5320000000e-5:

> Pr:=T-> -.1700000000e-3*T+.7601000000:

> airprops:= [k=k(T), rho=rho(T), cp=cp(T), mu=mu(T), nu=nu(T), alpha=alpha(T), Pr=Pr(T)]:

Newton's Law of Cooling.

> ncsphere:= Q-h*A*(Tw-Tinfty)=0;

[Maple Math]

> A:= Pi*Dia^2;

[Maple Math]

> h:= k(T)*NuD/Dia:

Sphere correlation equation of Churchill for laminar flow.

> NuD:= 2+0.589/(1+(0.469/Pr)^(9/16))^(4/9)*RaD^(1/4):

> Pr:= Pr(T):

> RaD:= g*beta*(Tw-Tinfty)*Dia^3/(alpha(T)*nu(T)):

Specify the system parameters.

> g:= 9.81: beta:= 1/Tinfty:

> Tinfty:= 300: T:= (Tw+Tinfty)/2: Dia:= 100/1000:

Specify the heat transfer rate [Maple Math] and solve for the surface temperature [Maple Math] .

> Q:= 10.5: Tw:= 'Tw':

> Tw:= evalf(fsolve(ncsphere, Tw, 0..1000), 5);

[Maple Math]

Check Rayleigh number.

> RaD;

[Maple Math]

The fluid flow is laminar.

Specify the wall temperature [Maple Math] and solve for the heat transfer rate [Maple Math] .

> Q:='Q': Tw:='Tw': Tw:= 385:

> Q:= evalf(fsolve(ncsphere, Q, 0..100), 5);

[Maple Math]

> RaD;

[Maple Math]

>

The fluid flow is laminar.