Natural Convection from Isothermal Cube
M.M. Yovanovich
NCCUBE3.MWS
Natural convection from a horizontal, isothermal cube. Use the correlation based on the square root of the total surface area. The dimensionless shape factor is 3.388 and the body-gravity function value is 0.985.
> restart:
Air properties correlation equations.
>
> k:= T->-.2571428571e-7*T^2+.9300000000e-4*T+.6685714286e-3:
> rho:= T->.8997142857e-5*T^2-.9361400000e-2*T+3.168594286:
> cp:= T->3/7000*T^2-113/500*T+7251/7:
> mu:=T->-.3000000000e-10*T^2+.6654000000e-7*T+.1200000000e-5:
> nu:=T->.1005714286e-9*T^2+.3444000000e-7*T-.3466857143e-5:
> alpha:=T->.1600000000e-9*T^2+.4480000000e-7*T-.5320000000e-5:
> Pr:=T-> -.1700000000e-3*T+.7601000000:
> airprops:= [k=k(T), rho=rho(T), cp=cp(T), mu=mu(T), nu=nu(T), alpha=alpha(T), Pr=Pr(T)]:
Newton's Law of Cooling.
> nccube:= Q-h*A*(Tw-Tinfty)=0;
> h:= k(T)*NusqrtA/sqrt(A):
> A:= 6*S^2;
Correlation equation for a horizontal cube.
> NusqrtA:= SstarsqrtA + 0.670/(1+(0.5/Pr)^(9/16))^(4/9)*GsqrtA*RasqrtA^(1/4):
> Pr:= Pr(T):
> RasqrtA:= g*beta*(Tw-Tinfty)*(sqrt(A))^3/(alpha(T)*nu(T)):
Specify the system parameters.
> g:= 9.81: beta:= 1/Tinfty: SstarsqrtA:= 3.388: GsqrtA:= 0.985:
> Tinfty:= 300: T:= (Tw+Tinfty)/2: S:= 120/1000:
Specify the heat transfer rate
and solve for the surface temperature
.
> Q:= 10.5: Tw:= 'Tw':
> Tw:= evalf(fsolve(nccube, Tw, 0..1000), 5);
Check Rayleigh number.
> evalf(RasqrtA, 4);
The fluid flow is laminar.
Specify the wall temperature
and solve for the heat transfer rate
.
> Q:='Q': Tw:='Tw': Tw:= 365:
> Q:= evalf(fsolve(nccube, Q, 0..100), 5);
> evalf(RasqrtA, 5);
The flow is laminar.