ME 353 Heat Transfer 1
M.M. Yovanovich
NC2SPH1.MWS
_______________________________________
Natural convection in annular space bounded by
two concentric, isothermal spheres.
The inner and outer diameters and temperatures
are: Di, Do and Ti, To, respectively.
Fluid properties are based on the mean value
of the inner and outer surface temperatures.
The expression for the effective thermal conductivity
of the fluid in the annular space is valid for the
range 10^2 <= Racstar <= 10^4. For Racstar < 100,
keff/kf = 1.
The correlation equation agrees with experimental data
to within plus or minus 10% for laminar flow.
________________________________________
> restart:
System parameters and fluid properties.
Dry air properties at Tf = (Ti + To)/2 = 330 K.
>
syspar:=
(g = 9.81, Di = 75/1000, Do = 200/1000, Ti = 360, To = 300);
>
airprops:=
(kf = 0.0287, rho = 1.073, cp = 1006, mu = 19.713-6,
nu = 18.37*10^(-6), alpha = (18.37/.69)*10^(-6),
Pr = 0.69, beta = 1/330);
Raithby-Hollands (1975) correlation equation.
>
Q:= Pi*keff*(Di*Do/L)*(Ti - To);
#Eq.(9.61)
>
keff:= 0.74*kf*(Pr/(0.861 + Pr))^(1/4)*Rasstar^(1/4);
#Eq. (9.62)
>
Rasstar:= L/(Di*Do)^4/(Di^(-7/5) + Do^(-7/5))^5*RaL;
#Eq. (9.63)
>
RaL:= g*beta*(Ti - To)*L^3/(alpha*nu);
#Not defined in the 4th edition
> L:= (Do - Di)/2; #See Fig. 9.14
The heat transfer per unit length expression.
> Q:= Q;
Observe that L does not appear in the above expression
and further that Do*Di can be cancelled from the expression.
The expression can be written in the following form:
>
Q:=
0.74*Pi*kf*Di*(Pr/(0.861 + Pr))^(1/4)/
(1 + (Di/Do)^(7/5))^(5/4)*(g*beta*
(Ti - To)*Di^3/(alpha*nu))^(1/4)*(Ti - To);
The dimensionless parameter which remains is the Rayleigh
number which is based on the diameter of the inner sphere.
The relation can be written in terms of the Nusselt number
based on the inner diameter NuDi = Q Di/(pi Di^2 kf (Ti - T0))
and the Rayleigh number.
>
NuDi:= .74*(Pr/(0.861 + Pr))^(1/4)/
(1 + (Di/Do)^(7/5))^(5/4)*RaDi^(1/4);
> RaDi:= g*beta*(Ti - To)*Di^3/(alpha*nu);
Computation of the parameters.
>
RaL1:=
evalf(subs(airprops, syspar, RaL), 5);
>
Rasstar1:=
evalf(subs(airprops, syspar, Rasstar), 5);
>
RaDi1:=
evalf(subs(airprops, syspar, RaDi), 5);
>
NuDi1:=
evalf(subs(airprops, syspar, NuDi), 5);
>
keff1:=
evalf(subs(airprops, syspar, airprops, keff), 5);
>
Q:=
evalf(subs(airprops, syspar, Q), 5);
The flow within the annular space is laminar.
The relationships given above can be used to calculate
another case. The fluid is air at Tf = 350 K.
The diameters are Di = 120 mm and Do = 160 mm.
>
airprops2:=
(g = 9.81, kf = 0.030, nu = 20.92e-6, alpha = 29.9e-6,
Pr = 0.70, beta = 0.00285);
>
sph2:=
(Di = 120/1000, Do = 160/1000, Ti = 120 + 273, To = 35 + 273);
>
RaL2:=
evalf(subs(airprops2, sph2, RaL), 6);
>
Rasstar2:=
evalf(subs(airprops2, sph2, Rasstar), 6);
>
RaDi2:=
evalf(subs(airprops2, sph2, RaDi), 6);
>
NuDi2:=
evalf(subs(airprops2, sph2, NuDi), 6);
>
keff2:=
evalf(subs(airprops2, sph2, airprops, keff), 6);
>
Q2:=
evalf(subs(airprops2, sph2, Q), 6);
>