ME 353 Heat Transfer 1
M.M. Yovanovich
FCTURB1.MWS
Turbulent forced convection in a circular pipe.
______________________________________________
Water flows in an isothermal circular pipe of diameter D
and length L. The tube wall is isothermal.
The flow is turbulent, i.e., ReD > 2300.
Determine the Reynolds number, the friction factor, the mass
flow rate, the Nusselt number and the heat transfer coefficient
for water at temperature T = 340 K.
Tube diameter is 30 mm.
_______________________________________________
> restart:
>
waterprops:=
(rho = 979.43, cp = 4.188, mu = 420e-6, kf = .660,
Pr = 2.66, nu = 0.4288e-6);
System parameters.
> syspar:= (D = 30/1000, Um = 1.5, Tw = 380, Tinlet = 310);
Correlation equations for turbulent flow.
Nusselt number and friction factor.
Use the correlation of Petukov, Eq. (8.62), and the
friction factor given by Eq. (8.21).
> h:= kf*NuD/D;
>
NuD:= (f/8)*ReD*Pr/(1.07 + 12.7*(f/8)^(1/2)*(Pr^(2/3) - 1));
#For 0.5 < Pr < 2000 and 10^4 < ReD < 10^6
>
f:= (0.790*ln(ReD) - 1.64)^(-2);
#For 3000 < ReD < 5e6
> ReD:= Um*D/nu;
Calculate the Reynolds number, friction factor, mass flow rate,
Nusselt number and the heat transfer coefficient.
> ReD1:= evalf(subs(waterprops, syspar, ReD), 5);
> f1:= evalf(subs(ReD = ReD1, f), 5);
> mdot1:= evalf(subs(waterprops, syspar, rho*Um*Pi/4*D^2), 5);
> NuD1:= evalf(subs(ReD = ReD1, syspar, waterprops, NuD), 5);
> h1:= evalf(subs(waterprops, syspar, h), 5);
>