ME 353 Heat Transfer 1

M.M. Yovanovich

FCEXP2.MWS

________________________________________________________

Forced convection heat transfer from an isothermal finite circular cylinder.

Consider both axial and cross flow

The fluid is dry air at one atmosphere.

Use the Yovanovich (1988) general correlation equation.

Compute the Reynolds number, the Nusselt numbers, the heat transfer

coefficients, and the heat transfer rates.

Use the properties calculator on the ME 353 Web site.

_________________________________________________________

> restart:

Air properties at Tfilm = 330 K.

Tfilm = (Tw + Tinfinity)/2 = Tinfinity + deltaT/2.

Properties calculator on ME 353 Web site.

> airprops:=
(Pr = 0.71, rho = 1.07, cp = 1.01, mu = 1.99*10^(-5),
kf = 0.0283, nu = 1.86*10^(-5), alpha = 2.63*10^(-5),
beta = 3.03*10^(-3));

[Maple Math]
[Maple Math]

Forced convection relationships.

> Q:= h*A*(Tw - Tinfinity);

[Maple Math]

> h:= kf/sqrt(A)*Nusselt;

[Maple Math]

> Nusselt:=
SsqrtAstar + (0.15*(P/sqrt(A))^(1/2)*Reynolds^(1/2) + 0.35*Reynolds^(0.566))*Pr^(1/3);

[Maple Math]

> Reynolds:= Uinfinity*sqrt(A)/nu;

[Maple Math]

> SsqrtAstar1:=
sqrt(A)/D*4/Pi*(1 + 0.869*(L/D)^(0.76))/(0.5 + L/D);

[Maple Math]

> SsqrtAstar2:=
sqrt(S)/D*4/sqrt(Pi)/sqrt(1 + 0.5*D/L)/ln(2*L/D);

[Maple Math]

> cylinder:=
(Tw = 360, Tinfinity = 300, Uinfinity = 2.5,
D = 30/1000, L = 100/1000);

[Maple Math]

> Acylinder:= evalf(subs(cylinder, Pi*D*L + 2*Pi/4*D^2), 4);

[Maple Math]

Calculate the Reynolds number for the finite cylinder.

> Re_cyl:=
evalf(subs(airprops, cylinder, A = Acylinder, Reynolds), 6);

[Maple Math]

Calculate the Nusselt numbers for the cylinder in axial and cross flow

arrangements.

The blockage parameter accounts for the orientation of the cylinder axis

with respect to the velocity vector.

> PoversqrtA:= (P/sqrt(A))^(1/2);

[Maple Math]

> Paxial:= Pi*D; Pcrossflow:= 2*(D + L);

[Maple Math]

[Maple Math]

> PoversqrtA1:= evalf(subs(cylinder, Paxial), 4);

[Maple Math]

> PoversqrtA2:= evalf(subs(cylinder, Pcrossflow), 4);

[Maple Math]

> Nu_cyl_axial:=
evalf(subs(airprops, A = Acylinder, P = Paxial, cylinder,
Nusselt), 5);

[Maple Math]

> Nu_cyl_crossflow:=
evalf(subs(airprops, A = Acylinder, P = Pcrossflow, cylinder,
Nusselt), 5);

[Maple Math]

> LoverD:= evalf(subs(cylinder, L/D), 4);

[Maple Math]

Since L/D < 8, use the first correlation equation for the dimensionless

diffusive limit.

> SsqrtAstar:=
evalf(subs(cylinder, A = Acylinder, SsqrtAstar1), 4);

[Maple Math]

The Nusselt numbers for axial and crossflow.

> Nu_axial:= Nu_cyl_axial;

[Maple Math]

> Nu_crossflow:= Nu_cyl_crossflow;

[Maple Math]

Calculate the area-average heat transfer coefficient.

> h:= kf/sqrt(A)*NusqrtA;

[Maple Math]

> h_axial:=
evalf(subs(airprops, cylinder, A = Acylinder,
NusqrtA = Nu_axial, h), 5);

[Maple Math]

> h_crossflow:=
evalf(subs(airprops, cylinder, A = Acylinder,
NusqrtA = Nu_crossflow, h), 5);

[Maple Math]

Calculate the heat transfer rates.

> Q_axial:=
evalf(subs(airprops, cylinder, A = Acylinder,
NusqrtA = Nu_axial, Q), 5);

[Maple Math]

> Q_crossflow:=
evalf(subs(airprops, cylinder, A = Acylinder,
NusqrtA = Nu_crossflow, Q), 5);

[Maple Math]

The heat transfer from the cylinder is approximately 11.3% greater in the

crossflow arrangement.

Summary of calculations.

> `case`:= cylinder;

[Maple Math]

> `Reynolds number` = Re_cyl;

[Maple Math]

> `P over A^(1/2) axial`:= PoversqrtA1;

[Maple Math]

> `P over A^(1/2) cross flow`:= PoversqrtA2;

[Maple Math]

> `SsqrtA`:= SsqrtAstar;

[Maple Math]

> `Nu axial flow`:= Nu_axial;

[Maple Math]

> `Nu cross flow`:= Nu_crossflow;

[Maple Math]

> `h axial flow`:= h_axial;

[Maple Math]

> `h cross flow`:= h_crossflow;

[Maple Math]

> `Q axial flow`:= Q_axial;

[Maple Math]

> `Q cross flow`:= Q_crossflow;

[Maple Math]

>