ME 353 Heat Transfer 1

M.M. Yovanovich

FCEXP1.MWS

________________________________________________________

Forced convection heat transfer from an isothermal cube and an

isothermal finite circular cylinder. The fluid is dry air at one atmosphere.

Use the Pasternak and Gavin correlation equation.

Compute the Reynolds numbers, the Nusselt numbers, the heat transfer

coefficients, and the heat transfer rates.

Use the properties calculator on the ME 353 Web site.

_________________________________________________________

> restart:

Air properties at Tfilm = 330 K.

Tfilm = (Tw + Tinfinity)/2 = Tinfinity + deltaT/2.

Properties calculator on ME 353 Web site.

> airprops:=
(Pr = 0.71, rho = 1.07, cp = 1.01, mu = 1.99*10^(-5),
kf = 0.0283, nu = 1.86*10^(-5), alpha = 2.63*10^(-5),
beta = 3.03*10^(-3));

[Maple Math]
[Maple Math]

Forced convection relationships.

> Q:= h*A*(Tw - Tinfinity);
h:= kf/sqrt(A)*Nusselt;
Nusselt:= C*Reynolds^m*Pr^(1/3);
Reynolds:= Uinfinity*sqrt(A)/nu;
coefficients_PasternakGavin:= (C = 0.914, m = 0.514);

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Math]

> cube:= (Tw = 360, Tinfinity = 300, Uinfinity = 1.5, s = 50/1000);

[Maple Math]

> cylinder:=
(Tw = 360, Tinfinity = 300, Uinfinity = 1.5,
D = 50/1000, L = 100/1000);

[Maple Math]

> Acube:= evalf(subs(cube, 6*s^2), 4);

[Maple Math]

> Acylinder:= evalf(subs(cylinder, Pi*D*L + 2*Pi/4*D^2), 4);

[Maple Math]

Check the Reynolds numbers for the cube and finite cylinder.

> ResqrtA:= Uinfinity*sqrt(A)/nu;

[Maple Math]

> Re_cube:= evalf(subs(airprops, cube, A = Acube, ResqrtA), 6);

[Maple Math]

> Re_cyl:= evalf(subs(airprops, cylinder, A = Acylinder, ResqrtA), 6);

[Maple Math]

Nusselt number correlation of Pasternak and Gauvin (1960).

The Reynolds numbers lie outside the range. We will use this

correlation to estimate the magnitude of h.

> NusqrtA:= 0.914*ResqrtA^(0.514)*Pr^(1/3);

[Maple Math]

> Nu_cube:=
evalf(subs(airprops, cube, A = Acube, NusqrtA), 5);

[Maple Math]

> Nu_cyl:=
evalf(subs(airprops, cylinder, A = Acylinder, NusqrtA), 5);

[Maple Math]

Calculate the area-average heat transfer coefficient.

> h:= kf/sqrt(A)*NusqrtA;

[Maple Math]

> h_cube:= evalf(subs(airprops, cube, A = Acube, h), 5);

[Maple Math]

> h_cyl:= evalf(subs(airprops, cylinder, A = Acylinder, h), 5);

[Maple Math]

Calculate the heat transfer rates.

> Q:= `h A (Tw - Tinfinty)`;

[Maple Math]

> Q:= h*A*(Tw - Tinfinity);

[Maple Math]

> Qcube:= evalf(subs(airprops, cube, A = Acube, Q), 5);

[Maple Math]

> Qcylinder:= evalf(subs(airprops, cylinder, A = Acylinder, Q), 5);

[Maple Math]

Summary of calculations.

> areas:= [Acube, Acylinder];

[Maple Math]

> Reynolds:= [Re_cube, Re_cyl];

[Maple Math]

> Nusselt:= [Nu_cube, Nu_cyl];

[Maple Math]

> heat_transfer_coeff:= [h_cube, h_cyl];

[Maple Math]

> heat_transfer_rate:= [Qcube, Qcylinder];

[Maple Math]

>