Example 9.4 of Incropera and DeWitt
M.M. Yovanovich
EX9P4.MWS
Example 9.4 of 4th edition of Incropera and DeWitt.
> restart:
Air properties at 367 K.
> airprops:= (k=0.0313, nu=22.8e-6,alpha=32.8e-6,Pr=0.697, beta=1/367);
System parameters.
> syspar:= (g=9.81, sigma=5.67e-8, epsilon=0.85, Dia=0.1, epsilon=0.85, Ts=165, Tf=23, Tsurr=23);
Heat loss per unit length of pipe by convection and radiation.
> Q:= Qconv + Qrad;
> Qconv:= h*A1*(Ts-Tf);
> Qrad:= epsilon*sigma*A1*((Ts+273)^4 - (Tsurr+273)^4);
> A1:= Pi*Dia;
> h:= k*NuD/Dia;
Churchill correlation equation for horizontal isothermal cylinder.
> NuD:= (0.6 + 0.387*RaD^(1/6)/(1+(0.559/Pr)^(9/16))^(8/27))^2:
> RaD:= g*beta*(Ts-Tf)*Dia^3/(alpha*nu);
> beta:= 1/(Tf+273);
Calculations.
> Q1:= evalf(subs(airprops, syspar, A=A1, Q),5);
> RaD1:= evalf(subs(airprops, syspar, RaD),5);
> NuD1:= evalf(subs(airprops, syspar, NuD),5);
> h1:= evalf(subs(airprops, syspar, h),5);
> Qconv1:= evalf(subs(airprops, syspar, A=A1, Qconv),5);
> Qrad1:= evalf(subs(airprops, syspar, A=A1, Qrad),5);
The convection and radiation contributions are comparable.
Find the effect of a layer of insulation on heat loss.
The conduction through the insulation is equal to the heat loss from the outer surface of the insulation by convection and radiation.
> HeatBalance:= Qins-Qconv2-Qrad2=0:
> Qins:= 2*Pi*kins*(T1-T2)/ln(r2/r1);
> inspar:= (kins=0.026, r1=0.05, r2=0.05+0.025, Ts=T2, T1=165);
> A2:= Pi*D2; D2:= 0.15;
Calculate the surface temperature of the insulation.
> Qconv2:= subs(Dia=0.15, Ts=T2, Qconv):
> Qrad2:= subs(Dia=0.15, Ts=T2, Qrad):
> HeatBalance:= Qins-Qconv2-Qrad2=0:
> fsolve(subs(airprops, syspar, inspar, T1=Ts, A=A2, HeatBalance), T2, 0..200);
The insulation has reduced the outer surface temperature to 35.65 degrees C.
> Qconv2:= evalf(subs(airprops, syspar, T2=35.654, Qconv2),4);
> Qrad2:= evalf(subs(airprops, syspar, T2=35.654, Qrad2),4);
> Qloss2:= Qconv2+Qrad2;
The insulation has reduced the convective and radiative losses significantly.