ME 353 Heat Transfer 1
M.M. Yovanovich
EX3P10.MWS
Example 3.10 of 4th edition of Fundamentals of Heat Transfer and
Mass Transfer, F.P. Incropera and D.P. DeWitt, 1996.
The approach taken in this Maple Worksheet is based on the concept
of component resistances and the equivalent thermal circuit.
> restart:
System resistance and system heat flow rate.
> Qsystem:= (Tb - Tf)/Rtotal;
> Rtotal:= Rcont + Rcyl + 1/(1/Rbare + 1/Rfins);
Component resistances.
> Rcont:= 1/(hc*2*Pi*r1*H);
> Rcyl:= ln(r2/r1)/(2*Pi*k*H);
> Rbare:= 1/(h*Abare);
Fins are in parallel arrangement.
>
Rfins:= Rfin/Nfins;
>
Rfin:=
(1 + (h/m/k)*tanh(m*L))/(tanh(m*L) + (h/m/k))/M;
See Eq. (3.72) and Table 3.4. Remove (Tb - Tf) from M.
Fin and system parameters.
> M:= sqrt(h*P*k*A); m:= sqrt((h*P)/(k*A));
>
P:= 2*(H + t); A:= t*H;
Abare:= (2*Pi*r2 - t*Nfins)*H;
Set the system parameters, then compute the component resistances, the total
resistance, and the system heat flow rate.
>
case1:= (r1 = 2/1000, r2 = 3/1000, L = 10/1000,
t = 0.7/1000, H = 6/1000,
Nfins = 12, k = 200, hc = 1000, h = 25,
Tb = 80, Tf = 20);
List of component thermal resistances.
>
resistances:=
[Rcont, Rcyl, Rbare, Rfin, Rfins, Rtotal]:
Contact resistance.
>
R[cont]:=
evalf(subs(case1, resistances[1]), 4)*K/W;
Cylindrical wall resistance.
>
R[cyl]:=
evalf(subs(case1, resistances[2]), 4)*K/W;
Unfinned (bare) surface resistance.
>
R[bare]:=
evalf(subs(case1, resistances[3]), 4)*K/W;
Single fin resistance.
>
R[fin]:=
evalf(subs(case1, resistances[4]), 4)*K/W;
Resistance of fin array.
>
R[fins]:=
evalf(subs(case1, resistances[5]), 4)*K/W;
System resistance.
>
R[total]:=
evalf(subs(case1, resistances[6]), 4)*K/W;
System heat transfer rate.
>
Q[system]:=
evalf(subs(case1, Qsystem), 4)*W;