
PROJ2S99.TEX

UNIVERSITY OF WATERLOO

Department of Mechanical Engineering

ME 303 Advanced Engineering Mathematics

M.M. Yovanovich Project 2 Solution

Nonhomogeneous PDE

Given the transient conduction equation with distributed volumetric heat sources
S > 0:
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with �(x; t) = T (x; t)� T1, where T1 represents the ambient temperature.

Boundary Conditions (BCs) and Initial Condition (IC)

The BCs and IC are:

x = 0;
@�(0; t)

@x
= 0; and x = L; �(L; t) = �L = TL � T1

and
�(x; 0) = 0 for 0 � x � L

The BCs are homogeneous Neumann and nonhomogeneous Dirichlet respec-
tively, and the IC is homogeneous.

Solution Procedure

The solution will be written as

�(x; t) = v(x) + w(x; t)

where v(x) is the steady-state solution for t! 1, and w(x; t) is the auxiliary
transient solution. Substitute into the given PDE to get

vxx + wxx +
S

k
=

1

�
wt



Now separate the above equation into two equations which are:
1) Nonhomogeneous ODE:

vxx = �
S

k
; 0 < x < L

2) Homogeneous PDE:

wxx =
1

�
wt; t > 0; 0 < x < L

Solution of Nonhomogeneous ODE

The solution of the nonhomogeneous ODE is

dv

dx
= �

Sx

k
+ C1 and v(x) = �

Sx2

2k
+ C1x+ C2

The boundary conditions are

x = 0;
@�

@x
=
dv
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+
@w

@x
= 0

Therefore both
dv

dx
= 0 and

@w

@x
= 0

At the other boundary

x = L; �(L; t) = v(L) + w(L; t) = �L

We must select
v(L) = �L and w(L; t) = 0

The two boundary conditions applied to the solution v(x) requires that

C1 = 0 and C2 =
SL2

2k
+ �L

The steady-state solution is therefore

v(x) = �
Sx2

2k
+
SL2

2k
+ �L; 0 � x � L

Solution of Homogeneous PDE
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The transient problem is

wxx =
1

�
wt; t > 0; 0 < x < L

with homogeneous boundary conditions:

x = 0;
@w

@x
= 0 and x = L; w(L; t) = 0

and nonhomogeneous initial condition:

t = 0; w(x; 0) = �(x; 0)� v(x) = �v(x); 0 � x � L

The Separation of Variables Method (SVM) leads to the solution

w(x; t) = T (t)X(x) = e��
2�t [C cos�x+D sin �x]

and
@w

@x
= T (t)X 0(x) = e��

2�t [�C� sin �x+D� cos �x]

The two homogeneous boundary conditions require

x = 0; X 0(0) = 0 and x = L; X(L) = 0

The �rst boundary condition (homogeneous Neumann condition) requires D =
0, which removes the sine function from the solution. The second boundary
condition (homogeneous Dirichlet condition) requires

C cos�L = 0; thus cos�L = 0; therefore �n =
n�

2L
; 1; 3; 5; : : : ; odd integers

or

�n =
(2n � 1)�

2L
; 1; 2; 3; : : :

for all positive integers.

The general term of the auxiliary transient solution is

wn(x; t) = Cne
�(2n�1)2�2�t=(4L2) cos

 
(2n � 1)�x

2L

!
; n = 1; 2; 3 : : :

Application of the superposition principle gives the general solution:

w(x; t) =
1X
n=1

Cne
�(2n�1)2�2�t=(4L2) cos

 
(2n� 1)�x

2L

!
; t > 0; 0 < x < L
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Fourier Coe�cients for Temperature

To �nd the Fourier coe�cients Cn we apply the initial condition to get the
Fourier cosine series:

�v(x) =
1X
n=1

Cn cos

 
(2n � 1)�x

2L

!
; t > 0; 0 < x < L

Application of the orthogonality property of cosines gives the relation:

Cn =
2

L

Z L

0
�v(x) cos

 
(2n� 1)�x

2L

!
dx; n = 1; 2; 3 : : :

Substitution of the steady-state solution and integrating we get, after some
calculus, the �nal relationship for the Fourier coe�cients:

Cn =
(�1)n 16

(2n � 1)3�

(
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�#
; n = 1; 2; 3; : : :

� Alternative form of the Fourier coe�cients for temperature:

Cn = �2

"
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#
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and
�nL = (2n � 1)

�

2
; n = 1; 2; 3; : : :

Note that the units of the Fourier coe�cients are K.

The �(x; t) solution can be written in the semi-dimensionless form:

�(x; t) =
SL2

2k
(1��2)+

1X
n=1

Cne
�(2n�1)2(�2=4)�) cos

 
(2n � 1)�

2
�

!
; � > 0; 0 < � < 1

with dimensionless time � = �t=L2 and dimensionless position � = x=L.

The temperature T (�; � ) is obtained from

T (�; � ) = �(�; � ) + T1 = v(�) + w(�; � ) + T1

Instantaneous Heat Transfer Rate

The instantaneous heat transfer rate through the boundary at x = L can be
obtained from the Fourier Law of Conduction:

Q(t) = �kA
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which gives

Q(t) = SAL+
kA

L

1X
n=1

En e
�(2n�1)2(�2=4) � ; � > 0

where the conduction area is A = �D2=4, and the Fourier coe�cients En for
the heat ow rate are obtained from the relation:

En = (�1)n+1 Cn
(2n� 1)�

2
; n = 1; 2; 3 : : :

The �nal form of the expression for the Fourier coe�cients for the heat ow
rate is

En =
�8

(2n � 1)2

"
SL2

�2k
+ (TL � T1)(n

2 � n+ 1=4)

#
; n = 1; 2; 3 : : :

� Alternative form of Fourier coe�cients for Q(t)

Fn = �Cn �n sin �nL = 2�n

"
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kL�3n
+

�L
L�n

#
sin2 �nL

where En = LFn, and

�nL = (2n � 1)
�

2
; n = 1; 2; 3; : : :

Maple Solutions

The complete solution of the given nonhomogeneous PDE is presented in the
Maple worksheets: PROJ2S99SOL.MWS andPROJ2S99SOL2.MWS. The
temperature �(x; t) or �(�; � ) and the instantaneous heat transfer rate through
the boundary at x = L or � = 1 are presented in the Maple worksheets.

System Parameter Values

D = 5mm
L = 100mm
k = 80W=(m �K)
� = 1:2� 10�5m2=s
S = 2 � 106W=m3

TL = 70�C
T1 = 20�C
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Calculations of Instantaneous Heat Transfer Rates

Table 1: Calculated Heat Flow Rates, Q(� ); [W ]

� Q(� )
0:01 �3:988
0:1 0:0001216
1:0 3:524
1 3:927

The calculated heat ow rates presented in Table 1 are based on the summation
of the �rst 200 terms of the transient part of the solution. An examination of
the solution reveals that the series converges very quickly for larger values of the
dimensionless time � , and therefore, only a few terms are required to provide
accurate values when � > 0:1.

The heat ow rate is into the rod when � = 0:01. At � = 0:1, the heat ow
rate is out of the rod and its value is small. When � = 1:0, the heat ow rate
is approximately 90% of the steady-state value of Q(1) = 3:927.

Plots of Temperature

The plots of the steady-state solution T (�;1) = v(�) + T1, and the transient
solution �(�; � ) + T1 for dimensionless times of � = 0:01; 0:1; and 1:0 are pre-
sented in the Maple worksheets:
PROJ2S99SOL.MWS and PROJ2S99SOL2.MWS.
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