STURM-LIOUVILLE PROBLEM (SLP)

The separation of variables method when applied to second-order linear homogeneous PDEs frequently leads to second-order homogeneous ODEs of the type:

$$
\frac{d}{dx}\left(p(x)\frac{dy(x)}{dx}\right) + \left[q(x) + \lambda r(x)\right]y(x) = 0, \qquad a \le x \le b
$$

or in the equivalent form

$$
\left[p(x)y'\right]'+\left[q(x)+\lambda r(x)\right]y=0,\qquad \ \, a\leq x\leq b
$$

where p, q and r are given functions of the independent variable x in the interval $a \leq x \leq b$, λ is a parameter, and $y(x)$ is the dependent variable. This equation is known as the Sturm-Liouville Differential Equation (SLDE). It is said to be regular in the interval [a, b] if $p(x)$ and $r(x)$ are positive in the interval. The $r(x)$ is called the weight function, and it appears in the orthogonality relation to be discussed below.

The general second-order differential equation of the form:

$$
a_2(x)y''(x)+a_1(x)y'(x)+[a_0(x)+\lambda]\,y(x)=0,\qquad a\le x\le b
$$

can be rewritten in the self-adjoint form by letting

 λ

$$
p(x)=e^{\int \dfrac{a_1(x)}{a_2(x)}dx}, \qquad q(x)=\dfrac{a_0(x)}{a_2(x)}p(x), \qquad \text{and} \qquad r(x)=\dfrac{p(x)}{a_2(x)}
$$

For a given value of λ two linearly independent solutions of a regular **SLDE** exist in $[a, b]$.

The Boundary-Value Problem (BVP) containing the SLDE, $a \le x \le b$, along with the separated homogeneous end conditions:

1.
$$
y_m(a) = y_m(b) = 0; \quad y_n(a) = y_n(b) = 0 \quad \text{for both} \quad m \quad \text{and} \quad n
$$

or

$$
2. \quad y_m'(a) = y_m'(b) = 0; \quad y_n'(a) = y_n'(b) = 0 \quad \text{ for both } \quad m \quad \text{ and } \quad n
$$

or a linear combination of the above two homogeneous conditions:

$$
3a.\qquad a_1y_m(a)+a_2y_m'(a)=b_1y_n(a)+b_2y_n'(a)=0
$$

and

3b.
$$
a_1y_m(b) + a_2y'_m(b) = b_1y_n(b) + b_2y'_n(b) = 0
$$

where the indices m and n denote different solutions, forms a **Sturm-Liouville** Problem SLP.

If the coefficients a_1, a_2 and b_1, b_2 are real constants such that $a_1^- + a_2^- \neq 0$ and $v_1^2 + v_2^2 \neq 0$, and the **SLDE** is regular, then the problem is a regular **SLP**.

The trivial solution $y_m(x) = 0$ and $y_n(x) = 0$ satisfies the **SLP** for any value of the parameter λ .

Nontrivial solutions are called eigenfunctions or characteristic functions of the SLP.

The corresponding values of λ_m or λ_n for which the nontrivial solutions exist are known as eigenvalues or characteristic values.

- 1. All the eigenvalues λ are real.
- 2. There is an infinite set of eigenvalues:

$$
\lambda_1 < \lambda_2 < \lambda_3 < \ \ldots \ < \lambda_n < \lambda_{n+1} < \ \ldots \ \to \infty
$$

3. Corresponding to each eigenvalue, λ_n , there is one eigenfunction (i.e., a nonzero solution) denoted $y_n(x)$ (which is unique to within a multiplicative constant) . $y_n(x)$ has exactly $n-1$ zeros for $a < x < b$.

4. If $y_n(x)$ and $y_m(x)$ are two different eigenfunctions (corresponding to $\lambda_n \neq \lambda_m$), then they are defined to be **orthogonal** with respect to the **weight** function r(x) on the interval ^a ^x b; i.e., they satisfy:

$$
\int_a^b r(x)y_n(x)y_m(x)dx = 0 \qquad \text{if} \qquad \lambda_n \neq \lambda_m
$$

the so-called orthogonality property of eigenfunctions.

If the eigenfunctions: y_n and y_m corresponding to the eigenvalues: λ_n and λ_m respectively, are solutions of the **SLDEs**:

$$
\left[p y_n' \right]' + \left[q + \lambda_n r \right] y_n = 0
$$

and

$$
\left[p y_m'\right]'+\left[q+\lambda_m r\right]y_m=0
$$

Multiplying the *first* **SLDE** by y_m and the *second* **SLDE** by y_n and then subtracting the *first* from the second gives:

$$
\left[p y'_m \right]' y_n - \left[p y'_n \right]' y_m + \left(\lambda_m - \lambda_n \right) r y_n y_m = 0
$$

However,

$$
\frac{d}{dx}([py_m']\,y_n-[py_n']\,y_m)=[py_m']'\,y_n-[py_n']'\,y_m
$$

Using this relationship we have

$$
\frac{d}{dx}\left(p\left[y'_my_n-y'_ny_m\right]\right)=(\lambda_n-\lambda_m)\,ry_ny_m
$$

Integrating the last equation with respect to x over $a \leq x \leq b$ we find:

$$
\left[p\left(y_{m}^{\prime}y_{n}-y_{n}^{\prime}y_{m}\right)\right]_{a}^{b}=\left(\lambda_{n}-\lambda_{m}\right)\int_{a}^{b}ry_{n}y_{m}dx
$$

We note that the eigenfunctions y_n and y_m satisfy the homogeneous end

conditions:

$$
a_1 y_n(a) + a_2 y'_n(a) = 0
$$

$$
a_1 y_m(a) + a_2 y'_m(a) = 0
$$

and

$$
b_1 y_n(b) + b_2 y'_n(b) = 0
$$

$$
b_1 y_m(b) + b_2 y'_m(b) = 0
$$

Excluding the trivial case $a_1 = a_2 = b_1 = b_2 = 0$, then for the nontrivial solutions we must have:

$$
y_m'(a)y_n(a) - y_n'(a)y_m(a) = 0
$$

and

$$
y_m'(b)y_n(b)-y_n'(b)y_m(b)=0\\
$$

The last equations allow us to write:

$$
(\lambda_n-\lambda_m)\int_a^b ry_ny_mdx=0
$$

Since $\lambda_n \neq \lambda_m$, then

$$
\int_a^b r y_n y_m dx = 0 \qquad \text{ if } \qquad n \neq m
$$

which is the required orthogonality property of eigenfunctions.

Example 1 Solve the following Sturm-Liouville problem:

 $y + \lambda y = 0,$ $0 \le x \le \pi,$ $y(0) = 0,$ $y(\pi) = 0$

Solution 1 In this problem we have: p(x)=1; q(x)=0; r(x)=1; a = 0;^b = $\pi, a_1 = 1, a_2 = 0, b_1 = 1$ and $b_2 = 0$. The eigenvalues are $\lambda = n^2, n = 1, 2, 3, \ldots$ The eigenfunctions are

$$
y_1 = \sin x, \qquad y_2 = \sin 2x, \qquad y_3 = \sin 3x, \ldots
$$

and, in general we have

$$
y_n = \sin nx, \qquad n = 1, 2, 3, \ldots
$$

where the arbitrary constants have been set equal to one, since eigenfunctions are unique only to within a multiplicative constant.

 \bf{E} and \bf{E} and \bf{E} is the following sturm-Liouville problem.

$$
y'' + \lambda y = 0, \qquad 0 \le x \le 1, \qquad y(0) + y'(0) = 0, \qquad y(1) = 0
$$

 S \mathcal{S} $1, a_1 = a_2 = b_1 = 1$ and $b_2 = 0$. The eigenvalues are $\lambda = n^2, n = 1, 2, 3, \ldots$ If $\lambda < 0$, the solution is trivial. If $\lambda = 0$, then $y = c_1 + c_2x$, and the boundary conditions applied to this function show that an eigenfunction associated with the eigenvalue $\lambda = 0$ is $1 - x$.

If $\lambda > 0$, we have as the solution of the differential equation

$$
y=c_1\cos\sqrt{\lambda}\;x+c_2\sin\sqrt{\lambda}\;x
$$

The condition $y(0) + y'(0) = 0$ implies that $c_1 + c_2\sqrt{\lambda} = 0$, i.e., $c_1 = -c_2\sqrt{\lambda}$. The condition $y(1) = 0$ implies that $\sqrt{\lambda} = \tan \sqrt{\lambda}$. Thus the eigenvalues are the squares of the solutions of the transcendental equation $z = \tan z$ which must be solved numerically.