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STURM-LIOUVILLE PROBLEM (SLP)

The separation of variables method when applied to second-order linear ho-
mogeneous PDEs frequently leads to second-order homogeneous ODEs
of the type:
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p(x)

dy(x)
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!
+ [q(x) + �r(x)] y(x) = 0; a � x � b

or in the equivalent form

[p(x)y0]
0

+ [q(x) + �r(x)] y = 0; a � x � b

where p; q and r are given functions of the independent variable x in the interval
a � x � b, � is a parameter, and y(x) is the dependent variable. This equation
is known as the Sturm-Liouville Di�erential Equation (SLDE). It is said
to be regular in the interval [a; b] if p(x) and r(x) are positive in the interval.
The r(x) is called the weight function, and it appears in the orthogonality
relation to be discussed below.
The general second-order di�erential equation of the form:

a2(x)y
00(x) + a1(x)y

0(x) + [a0(x) + �] y(x) = 0; a � x � b

can be rewritten in the self-adjoint form by letting

p(x) = e

R a1(x)
a2(x)

dx
; q(x) =

a0(x)

a2(x)
p(x); and r(x) =

p(x)

a2(x)

For a given value of � two linearly independent solutions of a regular SLDE
exist in [a; b].

The Boundary-Value Problem (BVP) containing the SLDE, a � x � b;

along with the separated homogeneous end conditions:

1: ym(a) = ym(b) = 0; yn(a) = yn(b) = 0 for both m and n

or

2: y0

m
(a) = y0

m
(b) = 0; y0

n
(a) = y0

n
(b) = 0 for both m and n



or a linear combination of the above two homogeneous conditions:

3a: a1ym(a) + a2y
0

m
(a) = b1yn(a) + b2y

0

n
(a) = 0

and

3b: a1ym(b) + a2y
0

m
(b) = b1yn(b) + b2y

0

n
(b) = 0

where the indices m and n denote di�erent solutions, forms a Sturm-Liouville
Problem SLP.

If the coe�cients a1; a2 and b1; b2 are real constants such that a21 + a22 6= 0 and
b21 + b22 6= 0, and the SLDE is regular, then the problem is a regular SLP.

The trivial solution ym(x) = 0 and yn(x) = 0 satis�es the SLP for any value of
the parameter �.

Nontrivial solutions are called eigenfunctions or characteristic functions of
the SLP.

The corresponding values of �m or �n for which the nontrivial solutions exist
are known as eigenvalues or characteristic values.

1. All the eigenvalues � are real.

2. There is an in�nite set of eigenvalues:

�1 < �2 < �3 < : : : < �n < �n+1 < : : : !1

3. Corresponding to each eigenvalue, �n, there is one eigenfunction (i.e.,
a nonzero solution) denoted yn(x) (which is unique to within a multiplicative
constant). yn(x) has exactly n� 1 zeros for a < x < b.

4. If yn(x) and ym(x) are two di�erent eigenfunctions (corresponding to
�n 6= �m), then they are de�ned to be orthogonal with respect to the weight
function r(x) on the interval a � x � b; i.e., they satisfy:



Z
b

a

r(x)yn(x)ym(x)dx = 0 if �n 6= �m

the so-called orthogonality property of eigenfunctions.

If the eigenfunctions: yn and ym corresponding to the eigenvalues: �n and
�m respectively, are solutions of the SLDEs:

[py0

n
]0 + [q + �nr] yn = 0

and

[py0

m
]0 + [q + �mr] ym = 0

Multiplying the �rst SLDE by ym and the second SLDE by yn and then sub-
tracting the �rst from the second gives:

[py0

m
]
0

yn � [py0

n
]
0

ym + (�m � �n) rynym = 0

However,
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n
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m
]
0
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n
]
0

ym

Using this relationship we have

d
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(p [y0

m
yn � y0

n
ym]) = (�n � �m) rynym

Integrating the last equation with respect to x over a � x � b we �nd:

[p (y0

m
yn � y0

n
ym)]
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We note that the eigenfunctions yn and ym satisfy the homogeneous end



conditions:

a1yn(a) + a2y
0

n
(a) = 0

a1ym(a) + a2y
0

m
(a) = 0

and

b1yn(b) + b2y
0

n
(b) = 0

b1ym(b) + b2y
0

m
(b) = 0

Excluding the trivial case a1 = a2 = b1 = b2 = 0, then for the nontrivial
solutions we must have:

y0

m
(a)yn(a)� y0

n
(a)ym(a) = 0

and

y0

m
(b)yn(b)� y0

n
(b)ym(b) = 0

The last equations allow us to write:

(�n � �m)
Z
b

a

rynymdx = 0

Since �n 6= �m, then

Z
b

a

rynymdx = 0 if n 6= m

which is the required orthogonality property of eigenfunctions.



Example 1 Solve the following Sturm-Liouville problem:

y00 + �y = 0; 0 � x � �; y(0) = 0; y(�) = 0

Solution 1 In this problem we have: p(x) = 1; q(x) = 0; r(x) = 1; a = 0; b =
�; a1 = 1; a2 = 0; b1 = 1 and b2 = 0. The eigenvalues are � = n2; n = 1; 2; 3; : : :.
The eigenfunctions are

y1 = sin x; y2 = sin 2x; y3 = sin 3x; : : :

and, in general we have

yn = sin nx; n = 1; 2; 3; : : :

where the arbitrary constants have been set equal to one, since eigenfunctions
are unique only to within a multiplicative constant.

Example 2 Solve the following Sturm-Liouville problem:

y00 + �y = 0; 0 � x � 1; y(0) + y0(0) = 0; y(1) = 0

Solution 2 In this problem we have: p(x) = 1; q(x) = 0; r(x) = 1; a = 0; b =
1; a1 = a2 = b1 = 1 and b2 = 0. The eigenvalues are � = n2; n = 1; 2; 3; : : :. If
� < 0, the solution is trivial. If � = 0, then y = c1 + c2x, and the boundary
conditions applied to this function show that an eigenfunction associated with
the eigenvalue � = 0 is 1� x.

If � > 0, we have as the solution of the di�erential equation

y = c1 cos
p
� x+ c2 sin

p
� x

The condition y(0) + y0(0) = 0 implies that c1 + c2
p
� = 0, i.e., c1 = �c2

p
�.

The condition y(1) = 0 implies that
p
� = tan

p
�. Thus the eigenvalues are the

squares of the solutions of the transcendental equation z = tan z which must be
solved numerically.


