Harmonic Function: Two-Dimensional
M.M. Yovanovich
2DHARMONIC1.MWS
> restart:
Two-dimensional harmonic function
is a solution of the two-dimensional Laplace equation
. The parameter
.
> u:= C*ln(sqrt(x^2+y^2));
> u_x:= diff(u,x);
> u_xx:= diff(u_x,x);
> u_y:= diff(u,y);
> u_yy:= diff(u_y,y);
> u_xx+u_yy;
> simplify(%);
Use Maple in one step to show that the given harmonic function satisfies the Laplace equation.
> simplify(diff(u,x$2) + diff(u,y$2));
Check alternative forms of the harmonic function.
> u2:= C*ln(x^2+y^2);
> simplify(diff(u2,x$2) + diff(u2,y$2));
> u3:= C*ln(1/sqrt(x^2+y^2));
> simplify(diff(u3,x$2) + diff(u3,y$2));
>