Week 7

Lecture 1

- Return Pro ject 1
-
- Exam and its solution are posted on Web site
-

		O ₂	Q3	Exam
$\operatorname{Max}.$	30	40	$30\,$	98
Min.			10	46
Avg. Std. Dev.	24.5	29.3	21.9	75.7
	6.6	8.2	3.6	12.8

Table 1: Midterm Exam Summary

Questions were marked by: Question 1 (Yuping), Question 2 (MMY), Question 3 (Rabih)

• Read Chapter 13 of Spiegel's Text. Boundary Value Problems using Fourier Series. We will spend four to five lectures on the topics covered in this chapter.

Lecture 2

 Section 1.1: 1D Diusion equation (Heat equation) with homogeneous Dirchlet BCs. Review of Fourier series expansions.

Lecture 3

. Discusse in details the orthogonality of sine functions for the problem in Section 1.1 of the Spiegel text.

The initial condition leads to the Fourier sine series:

$$
U(x,0)=U_0=\sum_{n=1}^\infty b_n\,\sin\frac{n\pi x}{L},\quad 0
$$

To obtain the relationship for the Fourier coefficients b_n , we must use the orthogonality property of the sine functions. Multiple the left hand side (lhs) and all terms on the right hand side \mathcal{C} and \mathcal{C} <u>.</u> L and discussed measurements where \sim integrate from α and α is the α - α - α and α α is the relation:

$$
\int_0^L U_0 \sin \frac{m\pi x}{L} dx = \sum_{n=1}^\infty b_n \int_0^L \sin \frac{m\pi x}{L} \sin \frac{n\pi x}{L} dx
$$

which is expressed in expanded form as

$$
\int_{0}^{L} U_{0} \sin \frac{m \pi x}{L} dx =
$$
\n
$$
b_{1} \int_{0}^{L} \sin \frac{m \pi x}{L} \sin \frac{1 \pi x}{L} dx + b_{2} \int_{0}^{L} \sin \frac{m \pi x}{L} \sin \frac{2 \pi x}{L} dx + b_{3} \int_{0}^{L} \sin \frac{m \pi x}{L} \sin \frac{3 \pi x}{L} dx +
$$
\n
$$
\sum_{n=4}^{\infty} b_{n} \int_{0}^{L} \sin \frac{m \pi x}{L} \sin \frac{n \pi x}{L} dx,
$$

Now systematically set $m = 1, 2, 3, \ldots$ to obtain the relations for the Fourier coefficients. For $m = 1$, we obtain the first coefficient:

$$
b_1 = U_0 \frac{\int_0^L \sin \frac{1\pi x}{L} dx}{\int_0^L \sin^2 \frac{1\pi x}{L} dx}, \quad m = n = 1
$$

and the remaining coefficients are equal to zero whenever $m > 1$ because of the orthogonality property of the sines. Similarly setting $m = 2$, we get the second $coefficient:$ \mathbf{a}

$$
b_2 = U_0 \frac{\displaystyle \int_0^L \sin \frac{2\pi x}{L} dx}{\displaystyle \int_0^L \sin^2 \frac{2\pi x}{L} dx}, \quad m = n = 2
$$

All other terms are zero whenever $m = 1$ and $m > 2$. In general, whenever $m = n$, we obtain the relation:

$$
b_n = U_0 \frac{\int_0^L \sin \frac{n \pi x}{L} dx}{\int_0^L \sin^2 \frac{n \pi x}{L} dx} = \frac{2U_0 (1 - \cos n \pi)}{n \pi}, \quad n = 1, 2, 3, \dots
$$

recall that $\cos n\pi = (-1)^n$, for $n = 1, 2, 3, \ldots$, and therefore the Fourier coefficients are obtained from

$$
b_n=\frac{2U_0(1-(-1)^n)}{n\pi},\quad n=1,2,3,\ldots.
$$

We find that

$$
b_1 = \frac{4U_0}{1\pi}
$$
, $b_3 = \frac{4U_0}{5\pi}$, $b_5 = \frac{4U_0}{5\pi}$ for $n = 1, 3, 5, ...$, odd integers

and

$$
b_n = 0 \quad \text{for} \quad n = 2, 4, 6, \dots, \text{even integers}
$$

The solution of the heat equation in Section 1.1 can be written as

$$
\frac{U(x,t)}{U_0} = \frac{4}{\pi} \left[\frac{1}{1} e^{-1 \pi^2 \kappa t/L^2} \sin \frac{1 \pi x}{L} + \frac{1}{3} e^{-9 \pi^2 \kappa t/L^2} \sin \frac{3 \pi x}{L} + \frac{1}{5} e^{-25 \pi^2 \kappa t/L^2} \sin \frac{5 \pi x}{L} + \ldots \right]
$$

The general term of the solution can be written as

$$
\frac{4}{\pi} \frac{1}{((2n-1)} e^{-(2n-1)^2 \pi^2 \kappa t/L^2} \sin \frac{(2n-1)\pi x}{L}, \quad n = 1, 2, 3, \dots
$$

The nondimensional dependent and independent parameters are: $U(x,t)/U_0$, $\zeta = x/L$ and $\tau = \kappa U/L$.

Discussed the convergence of solution for early times. Overshoot (Gibbs phenemenon) occurs at the end points $x = 0$ and $x = L$. As more terms of the summation are used, the overshoot decreases and moves to the end points. This can be shown by means of Maple and Mathcad.