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ME 303 M.M. Yovanovich

Week 7

Lecture 1

� Return Project 1
� Return Midterm Exam
� Exam and its solution are posted on Web site

� Examination Statistics

Table 1: Midterm Exam Summary

Q1 Q2 Q3 Exam
Max. 30 40 30 98
Min. 8 8 10 46
Avg. 24.5 29.3 21.9 75.7
Std. Dev. 6.6 8.2 3.6 12.8

Questions were marked by: Question 1 (Yuping), Question 2 (MMY), Question
3 (Rabih)

� Read Chapter 13 of Spiegel's Text. Boundary Value Problems using Fourier
Series. We will spend four to �ve lectures on the topics covered in this chapter.

Lecture 2

� Section 1.1: 1D Di�usion equation (Heat equation) with homogeneous Dirch-
let BCs. Review of Fourier series expansions.

Lecture 3

� Discuss in detail the orthogonality of sine functions for the problem in Section
1.1 of the Spiegel text.



The initial condition leads to the Fourier sine series:
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To obtain the relationship for the Fourier coe�cients bn, we must use the or-
thogonality property of the sine functions. Multiple the left hand side (lhs) and

all terms on the right hand side (rhs) by sin
m�x

L
dx where m = 1; 2; 3 : : :, and

integrate from x = 0 to x = L. This give the relation:
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which is expressed in expanded form as
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Now systematically set m = 1; 2; 3; : : : to obtain the relations for the Fourier
coe�cients. For m = 1, we obtain the �rst coe�cient:

b1 = U0
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and the remaining coe�cients are equal to zero whenever m > 1 because of the
orthogonality property of the sines. Similarly setting m = 2, we get the second
coe�cient:
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All other terms are zero whenever m = 1 and m > 2. In general, whenever
m = n, we obtain the relation:
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Recall that cosn� = (�1)n, for n = 1; 2; 3; : : :, and therefore the Fourier coe�-
cients are obtained from

bn =
2U0(1� (�1)n)

n�
; n = 1; 2; 3; : : :

We �nd that
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for n = 1; 3; 5; : : : ; odd integers

and
bn = 0 for n = 2; 4; 6; : : : ; even integers

The solution of the heat equation in Section 1.1 can be written as
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The general term of the solution can be written as
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The nondimensional dependent and independent parameters are: U(x; t)=U0,
� = x=L and � = �t=L2.

Discussed the convergence of solution for early times. Overshoot (Gibbs phen-
emenon) occurs at the end points x = 0 and x = L. As more terms of the
summation are used, the overshoot decreases and moves to the end points.
This can be shown by means of Maple and Mathcad.
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