Week 4

Lecture 1

Victoria Day. No Lecture.

Lecture 2

 Review dimensional and nondimensional forms of the one-dimensional Heat Equation (Diffusion Equation) in cartesian coordinates.

• In dimensional form $T = T(x, L, t, \alpha, T_i, T_0)$, 6 independent variables. The BCs and IC are nonhomogeneous.

• Introduce dimensionless variables: $\xi = x/L, \phi = (T(x,t) - T_i)/(T_0 - T_i)$ and $\tau = \alpha t/L^2 = t/(L^2/\alpha)$. Note that (L^2/α) is a characteristic time of the system.

• In nondimensional form: $\phi = \phi(\xi, \tau)$, 2 independent variables. One BC and the IC are now homogeneous.

• Dimensional heat transfer rate is based on Fourier's Law of Conduction: $Q =$ $-kA\frac{z}{\partial x}$ where Q is a function of position and time. The thermal conductivity of the rod is k, a constant, and A is the constant conduction area.

Nondimensional form of heat transfer.

$$
Q=-kA\frac{\partial T}{\partial x}=-kA\frac{T_0-T_i}{L}\frac{\partial \phi}{\partial \xi}
$$

 ${\rm Therefore}$

$$
Q^\star = \frac{LQ}{kA(T_0-T_i)} = -\frac{\partial \phi}{\partial \xi}
$$

Lecture 3

Fourier cosine and sine series.

• See Spiegel, Shaum's Outline Handbook of Mathematics: Section 23, pp. 131-135.

- See Spiegel's Text Book: pp. 382-395 with several examples.
- See ME 303 Web site for 3 page summary and Maple worksheets.
- Fourier coefficients: A_0, A_n, B_n
- Orthogonality Property of Cosines and Sines.
- Demonstrate that

$$
\int_0^L \cos^2(m\pi \frac{x}{L}) dx = \frac{L}{2}, \qquad m = 1, 2, 3, \dots
$$

- \bullet vectors and Even Functions on the interval $L \times \ell \times L$.
- \bullet Uqq functions: x , x , $\sin x$, $\sinh x$
- If $f(x)$ is even, then

$$
\int_{-L}^L f(x)\,dx = 2\int_0^L f(x)\,dx
$$

 \bullet Even functions: 1, $|x|, x^-, \cos x, \cosh x$

• If $f(x)$ is odd, then

$$
\int_{-L}^L f(x)\,dx=0
$$

 Fourier Cosine and Sine Series for even and odd functions on the half-interval \sim \sim \sim \sim \sim \sim

• Fourier Sine Series for "Saw Tooth", i.e. $f (x) = x$ on the interval $-L \le x \le L$. This is an odd function. Therefore the Fourier cofficients are:

$$
A_0 = 0, \qquad A_n = 0, \quad n = 1, 2, 3, \dots
$$

and

$$
B_n = \frac{2}{L} \int_0^L x \sin \left(n \pi \frac{x}{L} \right) \, dx
$$

Integration by parts can be used. From Spiegel's Handbook, 14.340, p. 75 wehave $\ell = \sqrt{2}$ \mathcal{L}

$$
\int x \sin(ax) \, dx = \frac{\sin(ax)}{a^2} - \frac{x \cos(ax)}{a}
$$

 \equiv and \equiv .

 \bullet Fourier coefficients are

$$
B_n=-(-1)^n\left(\frac{2L}{n\pi}\right),\qquad n=1,2,3,\ldots
$$

Fourier sine series for the "Saw Tooth" profile is approximately

$$
f(x) \approx \frac{2L}{\pi} \left[\sin\left(\frac{\pi x}{L}\right) - \frac{1}{2} \sin\left(\frac{2\pi x}{L}\right) + \frac{1}{3} \sin\left(\frac{3\pi x}{L}\right) - \cdots \right]
$$

Note that the absolute value of the amplitude decreases with increasing values of \sqrt{n} .