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ME 303 M.M. Yovanovich

Week 2

Lecture 1

� Hand out Problem Set 1.

� ODEs in cartesian, polar and spherical coordinates; TAs will discuss some
solutions in the tutorials. Discuss how to obtain solution of homogeneous ODE
in spherical coordinates. Use Maple to obtain the solution.

� Boundary Conditions (BCs). There are three types:
(i) BC of the First Kind or Dirichlet BC. u is speci�ed at points on the bound-
ary.
(ii) BC of the Second Kind or Neumann BC. @u=@n, gradient of u normal to
boundary is specifed at points on the boundary.
(iii) BC of the Third Kind or Robin BC. Linear combination of Dirichlet and

Neumann BCs is speci�ed at points on the boundary: a
@u

@n
+ bu = 0; where the

parameters: a; b are positive physical parameters.

Lecture 2

� Makeup Lecture 1.

� Error and complementary error functions. See Spiegel Handbook, 35:1�35:6,
Page 183.
� De�nitions
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where � is a dummy variable.

� Relations and Properties.

erf(x) + erfc(x) = 1

erf(0) = 0; erfc(0) = 1



erf(1) = 1; erfc(1) = 0

erf(�x) = erf(x)
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Demonstrate that the function: u = Cerf(�) where C is an arbitrary constant
satis�es the ODE:

d2u

d�2
+ 2�

du

d�
= 0

This is an important second-order ODE.

� How to generate PDEs. See Chapter 12, �rst section. We will not spend much
time on this topic. Demonstrate that given u(x; y) = yf(x) where f(x) is an

arbitrary function of x, elimination of f(x) gives the �rst-order PDE: u = y
@u

@y
.

� Also demonstrate that u(x; y) = f(x+ y) + g(x� y) satis�es the PDE: uxx =
uyy, where f(x+y) and g(x�y) are arbitrary functions. Here are two examples:

u(x; y) = sin(x+ y) + ex�y

and
u(x; y) = (x+ y)3 + tan(x� y)

� Separation of Variables Method (SVM). See Problem 7 of Problem Set 1.
There are several examples given.

� Separate the 2-D Laplace equation in cartesian coordinates: uxx + uyy = 0
into three sets of independent ODEs. Let u(x; y) = X(x)Y (y) where X(x) and
Y (y) are independent functions and substitute into the PDE.

@u

@x
=

@(XY )

@x
=

@(X)

@x
Y +X

@(Y )

@x
= X 0Y

because @Y=@x = 0.

@2u

@x2
=

@(X 0Y )

@x
=

@(X 0)

@x
Y +X 0

@(Y )

@x
= X 00Y

Similarly we �nd
@2u

@y2
= XY 00

2



The given PDE becomes
X 00Y +XY 00 = 0

Next we divide through by the assumed solution XY which gives separated
relation:

X 00

X
+
Y 00

Y
= 0

The numerator and denominator of the �rst term depends on x only. Also the
numerator and denominator of the second term depends on y only. Demonstrate
that both terms are constants by taking the derive with respect to x and then
with respect to y. The two terms must be constants. There are three options
for the constants:

i) 0; 0
ii) ��2; +�2

iii) ��2; +�2

where the parameter � > 0 is the separation constant. Each of these options
will give two independent ODEs. They are respectively

i) X 00 = 0 and Y 00 = 0;

ii) X 00 + �2X = 0 and Y 00 � �2Y = 0;

iii) X 00 � �2X = 0 and Y 00 + �2Y = 0;

These are second-order ODEs with constant coe�cients.

Lecture 3

� 1-D Di�usion Equation. u(x; t).

uxx =
1

�
ut; t > 0; 0 < x < L

where � > 0 is a thermophysical paramter. Let u(x; t) = X(x)T (t). Substitute
into the PDE to get

X 00

X
=

1

�

T 0

T

The LHS and RHS must be equal to the same constant. There are three options:

i) 0; 0
ii) ��2; ��2

iii) +�2; +�2
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The three options lead to the three sets of independent separated ODEs:

i) X 00 = 0 and T 0 = 0

ii) X 00 + �2X = 0 and T 0 + �2�T = 0

iii) X 00 � �2X = 0 and T 0 � �2�T = 0

The three sets of solutions are

i) X(x) = C1x+ C2 and T (t) = C3

ii) X(x) = C1 cos�x+ C2 sin �x and T (t) = C3e
��2�t

iii) X(x) = C1 cosh�x + C2 sinh �x and T (t) = C3e
�2�t

The �rst solution is independent of time. The second solution has a negative
exponential in time which goes to zero for very large times, and the third solution
has a positive exponential in time which becomes unbounded at very large times.
The second solution is

u(x; t) = X(x)T (t) = C3e
��2�t [C1 cos �x+ C2 sin �x]

Discuss heating and cooling problems which are identical when the temperature
di�erence �(t) is introduced. For both problems the temperature di�erence �(t)
is initially �(0) = �i > 0, and �(t) ! 0 as t ! 1. The form of the solution
must be of the form

�(t)

�i
= e�constant t; t > 0

The constant will be found later.

� Use SVM on the 1-D Wave Equation where u(x; t) to �nd the three sets of
separated ODEs. The 1-D wave equation is

uxx =
1

c2
utt; t > 0; 0 < x < L

where c > 0. The time equations will be second-order in time.

Lecture 4

� Classi�cation of Linear Second-Order Partial Di�erential Equations. The
two-dimensional PDE where u(x; y) has the general form:

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G
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where the coe�cients A;B;C;D;E;F; and G are functions of x and y or they
can be constants. The PDEs can be classi�ed as:

1: Hyperbolic if B2 � 4AC > 0

2: Parabolic if B2 � 4AC = 0

3: Elliptic if B2 � 4AC < 0

� The PDEs are de�ned to be homogeneous if G = 0, otherwise they are de�ned
to be nonhomogeneous.

� The PDEs are de�ned to be nonlinear if they contain terms like

u
@u

@x
=

1

2

@u2

@x

� Examples of Hyperbolic, Parabolic and Elliptic types.

� Di�usion equation: uxx = ut.
Here we have x = x; t = y. Comparing given equation with general equation
shows that: A = 1; B = 0; C = 0;D = 0; E = �1; F = 0; G = 0. Therefore
B2 � 4BC = (0)2 � (4) � (0) � (0) = 0. For all values of x and t the di�usion
equation is parabolic type.

� Wave equation: uxx = utt.
Here we have x = x; t = y. Comparing given equation with general equation
shows that: A = 1; B = 0; C = �1;D = 0; E = 0; F = 0; G = 0. Therefore
B2� 4BC = (0)2� (4)� (1)� (�1) = 4 > 0. For all values of x and t the wave
equation is hyperbolic type.

� Laplace equation: uxx + uyy = 0.
Here we have x = x; y = y. Comparing given equation with general equation
shows that: A = 1; B = 0; C = 1;D = 0; E = 0; F = 0; G = 0. Therefore
B2 � 4BC = (0)2 � (4) � (1) � (1) = �4 < 0. For all values of x and t the
Laplace equation is elliptic type.

� Wave Equation Appears in Several Physical Problems such as:

� 1. Vibrating Strings and Membranes (rectangular, circular)
� 2. Transverse Vibrations of Beams
� 3. Longitudinal Vibrations of Elastic Bars
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� 4. Torsional Vibrations of Elastic Rods
� 5. Sound Waves in Tubes or Pipes
� 6. Transmission of Electricity Along an Insulated, Low-Resistance Cable
� 7. Long Water Waves in a Straight Canal
� 8. Linearized Supersonic Air Flow
� 9. Many other examples from physics and engineering

� Vibrating String With Several Forces.

� String length is L. One end is �xed at x = 0 and the other end is �xed
at x = L. The tension in the string is T and its linear mass density is �.
The displacement of the string from its equilibrium position is y(x; t). The
displacements occur in the xy�plane, and the displacements are small, i.e.
jy(x; t)j << L. The local slope of the string is also small, therefore dy=dx << 1.

� Forces acting on the element of arclength ds.

ds =

vuut1 +

 
dy

dx

!2

dx � dx

� Tension Forces
At x, the vertical component of the tension force

T sin � � T tan � = T
@y

@x

acts in the negative y�direction.
At x+ dx, the vertical component of the tension force is using the Taylor series
approximation:

T
@y

@x
+

@

@x

 
T

@y

@x

!
dx

acts in the positive y�direction. The net vertical component of the tension
force is

d

dx

 
T
dy

dx

!
dx

acting in the positive y�direction.
� Body Force due to gravity is �gdx acting in the negative y�direction.
� Friction damping force in negative y�direction is related to the string velocity;
it is k1

@y

@t
dx:
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� Retarding force in negative y�direction is related to the string displacement
from equilibrium; it is k2ydx.

� External Periodic Force is F cos(!t)dx.

� Newton's Law of Motion applied to the string element gives:

X
Forcesy direction = (mass)� (acceleration)

Therefore

@

@x

 
T
@y

@x

!
dx+ F cos(!t)dx� k1

@y

@t
dx� k2ydx� �gdx = �

@2y

@t2
dx

Dividing through by the mass of the element �dx and assuming that the tension
is constant, we obtain the general wave equation for a string:

c2
@2y

@x2
+
F

�
cos(!t)� k1

�

@y

@t
� k2

�
y � g =

@2y

@t2
; t > 0; 0 < x < L

where c2 = T=� and c =
q
T=� is the wave propagation velocity.

� Free Vibrations of a String.
Here we set F = 0; k1 = 0; k2 = 0 and ignore the gravitational force. The
general wave equation becomes

c2
@2y

@x2
=

@2y

@t2
; t > 0; 0 < x < L

or
@2y

@x2
=

1

c2
@2y

@t2
; t > 0; 0 < x < L

or

yxx =
1

c2
ytt t > 0; 0 < x < L

This linear homogeneous PDE will be solved for a number of initial conditions.
At t = 0, the initial displacement from equilibrium is y(x; 0) = f(x), and the ini-

tial velocity is
@y(x; 0)

@t
= g(x) where both f(x) and g(x) are arbitrary functions.
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