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ME 303 M.M. Yovanovich

Week 10

Lecture 1

� Discussed the physics of the problem of Project 2. Used Maple to show the
temperature plots as a function of dimensionless time.
� Solution procedure is based on the material covered in Section 4 which deals
with nonhomogeneous PDEs and nonhomogeneous BCs.
� Last tutorial, the TAs discussed this solution procedure as applied to the heat
equation with nonhomgeneous BCs. The tutorial this week will consider the
solution procedure applied to the nonhomogeneous wave equation.

� Section 2.3 Vibrations of beams: longitudinal (axial) and transverse.
� Longitudinal vibrations, u(x; t):

utt = c2 uxx; t > 0; 0 < x < L; c2 =
E

�
> 0

where E is Young's modulus and � is the mass density. The PDE requires 2
BCs and 2 ICs for its solution. Separation of variables method (SVM) can be
used.
� Transverse vibrations, u(x; t):

utt + c2uxxxx = 0; t > 0; 0 < x < L; c2 =
EI

A�
> 0

where EI is the exural rigidty, A is the cross-sectional area, and � is the mass
density. The PDE is homogeneous. It requires 2 ICs and 4 BCs, two at each
end, because this equation is fourth-order in x.

� Use SVM. Let u(x; t) = X(x)T (t). One gets

T 00

T
+ c2

X iv

X
= 0 or

T 00

c2T
+
X iv

X
= 0

Choose the separation constant such that the time ODE is

T 00 + c2�2T = 0 and T (t) = C1 cos(�ct) + C2 sin(�ct)



The spatial ODE becomes:

X iv �m4X = 0; 0 < x < L

where m4 = �2 for convenience. The solution is

X(x) = A cos(mx) +B sin(mx) + C cosh(mx) +D sinh(mx)

The four constants of integration: A;B;C;D can be found from 4 BCs speci�ed
at the ends: x = 0 and x = L. The boundary conditions are of the type:

u(0; t) = 0; ux(0; t) = 0; uxx(0; t) = 0; uxxx(0; t) = 0;

and
u(L; t) = 0; ux(L; t) = 0; uxx(L; t) = 0; uxxx(L; t) = 0

depending on the type of support such as i) simply supported, ii) built-in or
�xed ends, and iii) free end. Consult your text on mechanics of deformable
solids.

� Section 4.5 Heat Conduction With Radiation (Convective Cooling)
� A rod of constant cross-sectional area A, thermal conductivity k, and thermal
di�usivity �. The temperature u(x; t) is the solution of homogeneous PDE:

uxx =
1

�
ut; t > 0; 0 < x < L

with IC:
t = 0; 0 � x � L; u(x; 0) = f(x)

and BCs:
t > 0; u(0; t) = 0; (homogeneous Dirichlet BC)

and convective cooling at the end x = L, the solid-uid interface.
� Derivation of Boundary Condition of the Third Kind (Robin Condition).
� Fourier's Law of Conduction on the solid side of the interface:

Qcond = �kA
 
@u(x; t)

@x

!
x=L

� Newton's Law of Cooling on the uid side of the interface:

Qconv = hA (u(L; t)� T1)

2



where h is the heat transfer coe�cient, and T1 is the ambient temperature. An
energy balance (heat balance) at the end x = L where Qcond = Qconv gives
the Robin BC:  

@u(x; t)

@x

!
x=L

= �h
k
(u(L; t)� T1)

This BC is nonhomogeneous due to T1. It can be made homogeneous by the
introduction of �(x; t) = u(x; t)� T1. Note that

@�

@x
=

@u

@x
; because

@T1
@x

= 0

The Robin condition becomes: 
@�(x; t)

@x

!
x=L

= �h
k
�(L)

which is homogeneous.
� Observe that Spiegel has used the symbol h to represent the two parameters
h=k. Many math texts do this. Be careful of the units.

Lecture 2

� Alternative formulation of the problem of Section 4.5.

@2�

@x2
=

1

�

@�

@t
; t > 0; 0 < x < L

BCs : x = 0; �(0; t) = 0 and x = L;
@�

@x
= �h

k
�

and

IC : t = 0; 0 � x � L; �(x; 0) = u(x; 0)� T1 = f(x)� T1

� Solution is

�(x; t) = T (t)X(x) = e��
2�t [C1 cos �x+ C2 sin �x]

� Homogeneous BCs require:

X(0) = 0 and X 0(L) +
h

k
X(L) = 0

The �rst BC at x = 0 requires that C1 = 0, thus removing the cosine function
from the solution. The second BC at x = L requires:

C2� cos �L +
h

k
C2 sin �L = 0
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Since C2 = 0 gives a trivial solution we choose

� cos �L +
h

k
sin �L = 0 or � cos � +Bi sin � = 0

where � = �L and Bi = hL=k with 0 < Bi < 1. See Eq. (68) of the text.
Recall that Spiegel's h in Eq. (68) is h=k of this formulation.

� Roots or zeros of the characteristic equation (CE).
The CE has an in�nite set of roots for any value of Bi. The roots are ordered:

�1 < �2 < �3 < � � � < �n < �n+1 < � � � <1
Also the di�erence between consecutive roots have the property

�n+1 � �n ! � as n!1
The roots can be calculated by means of the Newton-Raphson iterative method.
The location of the roots must be determined. Plots of CE can reveal the
locations.

� Limiting values of the roots for Bi =1 and Bi = 0

Bi =1; sin � = 0; �n = n�; n = 1; 2; 3; : : :

where the zero root has been rejected because it gives a trivial solution.

Bi = 0; cos � = 0; �n = (2n� 1)
�

2
; n = 1; 2; 3; : : :

� Ranges of the roots of CE for 0 < Bi <1
�=2 < �1 < �
3�=2 < �2 < 2�
5�=2 < �3 < 3�
(2n� 1)�=2 < �n < n�
Used Maple to locate the roots, and to calculate the roots.

� The solution is

�(x; t) =
1X
n=1

Dne
��2

n
�t sin �nx; t > 0; 0 < x < L

where �n = �n=L are the roots of the CE. The initial condition requires

�(x; 0) = f(x)� T1 =
1X
n=1

Dn sin �nx; 0 < x < L
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This is a Fourier sine series. The Fourier coe�cients Dn can be found by means
of the orthogonality property of the sines. Multipy the left-hand side and all
terms of the right-hand side by sin �mx dx and integrate with respect to x. Thus

Z L

0

(f(x)� T1) sin �mx dx =
1X
n=1

Dn

Z L

0

sin �mx sin �nx dx

When �m 6= �n we have

Z L

0

sin �mx sin �nx dx = 0

otherwise when �m = �n,

Z L

0

sin2 �nx dx =
�nL� cos �nL sin �nL

2�n
=

L

2

"
�n � cos �n sin �n

�n

#

Using the relationship given by the CE, the above integral can be written as

Z L

0

sin2 �nx dx =
L

2

Bi+ cos2 �n
Bi

and the Fourier coe�cients are given by

Dn =
Bi

Bi+ cos2 �n

2

L

Z L

0

(f(x)� T1) sin �nx dx

To proceed further one needs to specify the function f(x).

Lecture 3

� Similarity Method (Boltzmann Transformation)
Transforms PDE into ODE.

One-dimensional di�usion equation:

Txx =
1

�
Tt; t > 0; x > 0

with initial condition:
T (x; 0) = Ti; x � 0

and boundary conditions for t > 0:

T (0; t) = T0; T (x!1; t)! Ti
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De�ne temperature excess to create homogeneous conditions: �(x; t) = T (x; t)�
Ti. The problem becomes:

�xx =
1

�
�t; t > 0; x > 0

with initial condition:
�(x; 0) = 0; x � 0

and boundary conditions for t > 0:

�(0; t) = �0 = T0 � Ti; �(x!1; t)! 0

� Introduce the similarity parameter: � = xp
4�t

. Note that

@�

@x
=

1p
4�t

and
@�

@t
=

xp
4�

�
�1

2
t�3=2

�

� Let �(�) = �(x; t)=�0.
� Transform the partial derivatives.

@�

@x
=

@

@�
[�0�]

@�

@x
=

�0p
4�t

@�

@�

@2�

@x2
=

@

@x

@�

@x
=

@

@�

(
�0p
4�t

@�

@�

)
@�

@x
=

�0
4�t

@2�

@�2

@�

@t
=

@

@�
(�0 �)

@�

@t
= �0

@�

@�

@

@t

(
xp
4�

t�1=2
)
=

x �0p
4�

�
�1

2
t�3=2

�
@�

@�
=

� x �0

2t
p
4�t

@�

@�
= �� �0

2t

@�

@�

� Substitute into the PDE and replace

@2�

@�2
by

d2�

d�2
because �(�) only

@2�

@x2
� 1

�

@�

@t
=

�0
4�t

d2�

d�2
+
�0�

2�t

d�

d�
= 0

� Divide by �0 and multiply by 4�t to get ODE:

d2�

d�2
+ 2�

d�

�
= 0
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� Transformed initial and boundary conditions:

t = 0; � =1; � = 0

and
t > 0; x = 0; � = 0; � = 1

t > 0; x!1; � !1; �! 0

� Solution of ODE.
Let w = d�=d� to reduce order of ODE.

dw

d�
+ 2�w = 0

� Apply separation of variables method to �nd the solution of the ODE. There-
fore,

dw

w
= �2�d�

After integration we get

w =
d�

d�
= C1e

��2

Another integration gives

� = C1

Z �

0

e��
2

d� + C2

where lower limit was arbitrarily set to zero.
� Apply the boundary conditions to �nd the constants: C1; C2. When � = 0,
� = 1, the integral is zero, and C2 = 1.
When � =1, � = 0 and we have

0 = C1

Z
1

0

e��
2

d� + 1 = C1

p
�

2
+ 1

The value of the integral is
p
�=2. The �rst constant of integration is

C1 = � 2p
�

� The solution of the ODE and therefore the PDE is

� = 1 � 2p
�

Z �

0

e��
2

d� = 1� erf(�) = erfc(�)
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where erf(�) and erfc(�) are the error and complementary error functions with
similarity parameter: � = x=(2

p
�t).

� The solution can also be expressed as

T (x; t)� Ti
T0 � Ti

= erfc

 
x

2
p
�t

!
t > 0; x � 0

� See Maple worksheets for Similarity Method and some characteristics of the
error and complementary error functions.
Some properties of these important special functions:
erf(0) = 0; erf(1) = 1; erf(��) = �erf(�); erfc(�) = 1 � erf(�)
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