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Open book �nal examination. All aids are allowed. All questions must be answered and
they are of equal value. Show all steps and state clearly all assumptions made. Material

which is illegible will not be considered.

The problems deal with Laplace, Di�usion and Wave Equations which are classi�ed as el-
liptic, parabolic and hyperbolic types. The solution methods employed are separation of
variables, Laplace transform and similarity transformation.

The mathematical problems come from several engineering areas such as: conduction heat
transfer, mass transfer, 
uid mechanics, and dynamics of solids.

Good luck.

1. Steady-state convective heat transfer from an isothermal plate which is maintained at
T = T0 into a laminar 
owing 
uid at T = T1 (T0 > T1) is approximated by the
following partial di�erential equation (parabolic type):
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The physical parameters: � (mass density), cp (speci�c heat), and k (thermal conduc-
tivity) are assumed to be constants. The dimensionless temperature � is de�ned as
� = (T � T1)=(T0� T1) where T = T (x; y). The e�ective 
uid velocity ue is assumed
to be constant.

(a) Check the units of the left and right hand sides of the given PDE. The units of k
are W=(m �K).

(b) By means of dimensional analysis of the PDE, de�ne the similarity parameter �.
Let � = k=(�cp) in the similarity parameter.

(c) Use the similarity parameter of part (b) above, to transform the given PDE into
an ODE such that � depends on � only, and 0 � � <1:

(d) Obtain the solution to the ODE for the following boundary conditions:

�(0) = 1 �(1) = 0
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2. It is found empirically that the transport of neutrons in a reactor core is a di�u-
sion process similar to heat conduction. In particular, the neutron density u(x; y; z; t)
(neutrons per unit volume) at any point within the core is the solution of the partial
di�erential equation:

1

k

@u

@t
= r2u+B2u

The constant k represents the transport of neutrons and the constant B is the so-
called buckling constant which is determined empirically for each speci�c mixture of
�ssionable and moderating material. Since the second term on the right-hand side
of the PDE accounts for the production of neutrons within the core, it is called the
source term.

(a) What are the units of r2, k and B? The space and time units are m and s respec-
tively.

(b) Show that the substitution u(x; y; z; t) = eB
2ktv(x; y; z; t) transforms the u�equation

into the source-free di�usion equation:
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Assume that the reactor core can be modeled as a very large slab of thickness L. Then
the neutron density u(x; t) and the new function v(x; t) are dependent on one space
variable and the time. The three-dimensional source and source-free PDEs reduce to
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(c) Obtain the neutron density solution, u(x; t), for the following boundary conditions:

v(0; t) = v(L; t) = 0

and the arbitrary initial condition:

v(x; 0) = f(x); 0 � x � L

3. Use Separation of Variables Method (SVM) to obtain the the solution to the following
two-dimensional Laplace (elliptic type) PDE within the rectangular domain domain
f0 � x � a; 0 � y � bg:

PDE : uxx + uyy = 0

with homogeneous Neumann and Robin conditions along three boundaries:

1) ux(0; y) = 0

2) ux(a; y) = �
h

k
u(a; y)
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3) uy(x; b) = 0

and mixed Neumann boundary conditions along the boundary y = 0:

4a) uy(x; 0) = 0; 0 � x < c

4b) uy(x; 0) = �
q0
k

c < x � a

The physical parameters h; k; q0 are positive constants.

4. Given the nonhomogeneous, second-order, partial di�erential equation:
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t > 0; 0 � r � a; 0 � z � L

where the physical parameters: �, � and @P=@z are constants with respect to the
independent variables: r and t. The length L of the circular tube of radius a is much
larger than the radius, i.e. L >> a.

(a) Separate the given nonhomogeneous PDE into a homogeneous PDE in w(r; t) and
a nonhomogeneous ODE in v(r) by setting u(r; t) = w(r; t) + v(r).

(b) Separate the homogeneous PDE into three sets of relatedODEs by setting w(r; t) =
R(r) � � (t) where R(r) and � (t) are independent space and time functions.

(c) Obtain the appropriate solution u(r; t) for the boundedness condition along the
axis, i.e. u(0; t) is �nite, the homogeneous Dirichlet condition, u(a; t) = 0, on the
boundary r = a, and the initial condition u(r; 0) = 0.

5. A 
uid having kinematic viscosity � is contained between two in�nitely large plates
separated by a distance L. Initially the 
uid velocity is zero everywhere, i.e. u(y; 0) = 0,
where y is the coordinate perpendicular to the plates, and its origin is located in the
lower plate.

Suddenly the upper plate is set into motion such that its velocity u(L; t) = u0, constant.

The partial di�erential equation which is applicable for the above problem is the ho-
mogeneous di�usion (parabolic type) equation:
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The initial condition (IC) and boundary conditions (BCs) are:

u(y; 0) = 0; u(0; t) = 0; u(L; t) = u0

(a) Nondimensionalize the PDE, the IC and the BCs.

(b) Use the Laplace Transform Method to obtain the solution u(y; s).

(c) The shear at the wall y = L is de�ned as � = �
@u(L; t)

@y
where � is the 
uid

viscosity. Find the wall shear in the s�domain from the �u(y; s) solution.

(d) Obtain the physical solution u(y; t) by means of Laplace Transform Tables.
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