Radiation Exchange Between Black and Gray Surfaces

Radiation View Factor

When radiation leaves a black convex surface whose area is A_1 at absolute temperature T_1 , a certain fraction F_{12} will be absorbed by a second convex surface whose area is A_2 at absolute temperature $T_2 < T_1$. The radiation view factor is given by the following relation:

$$A_1 F_{12} = A_2 F_{21} = \iint_{A_2} \iint_{A_1} \frac{\cos \beta_1 \cos \beta_2}{\pi r^2} \, dA_1 \, dA_2$$

where r is the radial distance between the centroids of the arbitrary differential areas dA_1 and dA_2 which are located in the surfaces A_1 and A_2 respectively. The angle β_1 is subtended by the radius r and the outward-directed normal to the differential area dA_1 at its centroid. The angle β_2 is defined in a similar manner. In the previous relation F_{21} is the fraction of radiation which leaves surface A_2 and is intercepted by surface A_1 . The view factors are dimensionless radiation parameters where

$$0 \le F_{12} \le 1$$
 and $0 \le F_{21} \le 1$

Reciprocity Relation

The relation

$$A_1 F_{12} = A_2 F_{21}$$

is called the reciprocity relation which is valid for any two convex surfaces. The view factors for a simple system consisting of two isothermal surfaces the view factors have the relations:

$$F_{11} + F_{12} = 1$$
 and $F_{21} + F_{22} = 1$

If the surfaces are convex or flat $F_{11} = F_{22} = 0$. If the surfaces are concave, then $0 < F_{11} < 1$ and $0 < F_{22} < 1$.

The radiation view factors depend on the geometry of the surfaces and their spatial relation to each other. The calculations of the view factors by the above relation are usually difficult to do. There are simple techniques available to determine the view factors for certain axisymmetric systems and some infinitely long two-dimensional systems.

Radiant Exchange Between Two Isothermal Black Surfaces

The net radiant exchange between two isothermal black surfaces is given by

$$\dot{Q}_{12} = \frac{E_{b1} - E_{b2}}{R_{12}}$$

where $E_{b1} = \sigma T_1^4$ and $E_{b2} = \sigma T_2^4$ are the blackbody radiative nodes and $R_{12} = 1/A_1 F_{12} = 1/A_2 F_{21} = R_{21}$ is the spatial radiative resistance between the two surfaces. The units of R_{12} and R_{21} are m^{-2} .

The previous relation can be expressed in the following form:

$$\dot{Q}_{12} = \sigma A_1 F_{12} \left[T_1^4 - T_2^4 \right]$$

which clearly reveals the non-linear nature of radiative heat exchange. The radiative exchange between two isothermal black surfaces can be represented by a simple thermal circuit consisting of two nodes: E_{b1} , E_{b2} separated by a single radiative resistance R_{12} . The throughput is \dot{Q}_{12} .

Radiant Exchange Between Two Isothermal Gray Surfaces

The net radiant exchange between two isothermal gray surfaces whose areas are A_1, A_2 respectively and whose emissivities are ϵ_1, ϵ_2 respectively is given by

$$\dot{Q}_{12} = rac{E_{b1} - E_{b2}}{R_{\mathrm{total}}}$$

where the total radiative resistance now consists of three resistances in series:

$$R_{\rm total} = R_{s1} + R_{12} + R_{s2}$$

The gray surface resistances are given by:

$$R_{s1} = rac{1-\epsilon_1}{A_1\,\epsilon_1} \qquad ext{and} \qquad R_{s2} = rac{1-\epsilon_2}{A_2\,\epsilon_2}$$

with $0 \le \epsilon_1 \le 1$ and $0 \le \epsilon_2 \le 1$. When $\epsilon_1 = 1$ and $\epsilon_2 = 1$ the gray surface relation goes to the blackbody relation given above. The equivalent thermal

circuit consists of two blackbody nodes E_{b1} , E_{b2} and two internal nodes denoted J_1 and J_2 which are called the *radiosity*. The units of radiosity J are identical to the units of E_b . The surface resistance R_{s1} connects the two nodes E_{b1} and J_1 , and the surface resistance R_{s2} connects the two nodes E_{b2} and J_2 . The two radiosity nodes are connected by the spatial resistance R_{12} . The throughput is the net radiant exchange \dot{Q}_{12} .

The general gray surface radiant exchange expression gives the following expressions for two infinite parallel planes, two long concentric circular cylinders, and two concentric spheres.

Two Infinite Parallel Planes

In this case $A_1 = A_2 = A$ and $F_{12} = 1$. Therefore we get

$$\dot{Q}_{12} = rac{A \left(E_{b1} - E_{b2}
ight)}{rac{1}{\epsilon_1} + rac{1}{\epsilon_2} - 1}$$

Long Concentric Gray Circular Cylinders

In this case the inner isothermal cylinder at absolute temperature T_1 and whose area is $A_1 = 2 \pi r_1 L$ is placed inside the outer cylinder at absolute temperature $T_2 < T_1$ and whose area is $A_2 = 2 \pi r_2 L$. Both cylinder have the same length $L >> r_2 > r_1$. The emissivities of the two cylinders are ϵ_1 and ϵ_2 respectively.

The net radiative exchange is given by

$$\dot{Q}_{12} = \frac{2 \pi r_1 L \left(E_{b1} - E_{b2}\right)}{\frac{1}{\epsilon_1} + \frac{r_1}{r_2} \left(\frac{1}{\epsilon_2} - 1\right)}$$

Concentric Gray Spheres

In this case the inner isothermal sphere at absolute temperature T_1 and whose area is $A_1 = 4 \pi r_1^2$ is placed inside the outer sphere at absolute temperature $T_2 < T_1$ and whose area is $A_2 = 4 \pi r_2^2$. The emissivities of the two spheres are ϵ_1 and ϵ_2 respectively.

The net radiative exchange is given by

$$\dot{Q}_{12} = rac{4 \, \pi \, r_1^2 \, \left(E_{b1} - E_{b2}
ight)}{rac{1}{\epsilon_1} + rac{r_1^2}{r_2^2} \left(rac{1}{\epsilon_2} - 1
ight)}$$

The expression for two gray spheres gives a simple relation when the outer sphere is much larger than the inner sphere, i.e. $r_2 >> r_1$. For this case the previous expression goes to

$$\dot{Q}_{12} = \epsilon_1 \, 4 \, \pi \, r_1^2 \, \left(E_{b1} - E_{b2} \right)$$

which is independent of the emissivity and surface area of the larger sphere. The emissivity and the surface area of the smaller sphere control the radiative exchange between the two surfaces.