
FINSWEB.TEX

ECE 309 M.M. Yovanovich

Fins or Extended Surfaces

Fins or extended surfaces are used to increase the heat transfer rate from sur-
faces which are convectively cooled by gases (air) under natural or forced convec-
tion. The characteristics of �ns: (a) they are metallic, (b) they having di�erent
shapes, (c) the �n length is much larger than the thickness or diameter, (d)
there is perfect or imperfect contact at the base, (e) the �n tip is adiabatic or it
is cooled, (f) the temperature distribution is one-dimensional because Bi < 0:2.

Derivation of Fin Equation

The derivation of the �n equation is based on a heat balance over the boundaries
of a di�erential volume dV = A(x) dx where A(x) is the variable conduction
area. The heat conduction rate into the volume through the boundary located
at x according to Fourier's Law of Conduction is:

_Qx = �kA(x)
d�(x)

dx

where �(x) = T (x)� Tf is the local temperature excess. The heat conduction
rate out of the control volume through the boundary located at x+ dx is

_Qx+dx = _Qx +
d

dx
_Qx dx+ higher order terms of Taylor series expansion

The heat loss rate from the surface of the �n by convective cooling according
to Newton's Law of cooling is

_Qloss = hP (x) �(x) dx

where h is the uniform heat transfer coe�cient and P (x) is the local �n perime-
ter. For steady-state and in the absence of thermal sources or sinks, the energy
balance over the boundaries of the control volume, ie:

_Qx = _Qx+dx + _Qloss

leads to the following energy balance:

d

dx
_Qx dx+ hP (x) �(x) dx = 0



General Fin Equation

Assuming the thermal conductivity to be constant, and after some manipula-
tions the general �n equation is obtained:

d2�

dx2
+

1

A(x)

dA(x)

dx

d�(x)

dx
� h

k

P (x)

A(x)
�(x) = 0; 0 � x � L

where L is the length of the �n. The above equation is second-order with
variable coe�cients. It requires two boundary conditions: (i) at the �n base
(x = 0) and (ii) at the �n tip (x = L).

Boundary Conditions

At the �n base x = 0 there are two possible conditions: (a) perfect contact
where T (0) = Tb which requires that �(0) = �b = Tb � Tf and Tb is the base
temperature, or there is imperfect contact at the base in which case we have
qb = hc [Tb � T (0)] = �k dT=dx where hc is the contact conductance. The
selection of the imperfect contact case leads to the boundary condition of the
third kind:

d�(0)

dx
= �hc

k
[�b � �(0)]

At the �n tip x = L there are three possible conditions: (a) adiabatic (insulated)
tip where dT=dx = d�=dx = 0, (b) perfect contact with the uid where T (L) =
Tf , therefore �(L) = 0, and (c) convective cooling at the �n tip such that
qtip = he [T (L)� Tf ] = �k dT (L)=dx where he is the convective coe�cient. The
third case will be considered here because it leads to the general �n solution.
Therefore at the �n tip we take:

d�(L)

dx
= �he

k
�(L)

Fin Equation for Constant Cross-Sections

For constant cross-section �ns: A(x) = A and P (x) = P , therefore the general
�n equation becomes:

d2�

dx2
�m2� = 0; 0 � x � L

where the �n parameter is de�ned as

m2 =
hP

kA
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and its units are m�2. The hyperbolic form of the solution of the previous
second-order di�erential equation is chosen:

� = C1 coshmx+ C2 sinhmx

The temperature gradient is

d�

dx
= mC1 sinhmx+mC2 coshmx

Dimensionless Fin Parameters

We introduce the following three dimensionless �n parameters which account
for heat transfer through the base, the �n tip and the �n sides:

Bic =
hcL
k ; Bie =

heL
k ; mL =

q
hP

kA
L; Bi = hte

k < 0:2

where te is some e�ective thickness of the �n cross-section. The e�ective thick-
ness of a rectangular cross-section: 2t by w where w is the width and w >> 2t
is te = t. This relation is consistent with the de�nition:

te =
A

P
=

cross� sectional area

perimeter

For a circular �n of diameter d, te = A=P = (�=4d2)=(�d) = d=4; for a �n of
square cross-section where A = 4w2, te = A=P = (4w2)=(8w) = w=2.

Constants of Integration

After some algebraic manipulations the constants of integration for the two
boundary conditions of the third kind give:

C1 = �b

"
1 +

mL�

Bic

#
�1

[K]

and

C2 = ��b �
"
1 +

mL�

Bic

#
�1

[K]

The �n function � is de�ned as

� =
mL tanhmL+Bie
mL+Bie tanhmL
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Fin Heat Transfer Rate

The relation for the heat transfer rate through the �n can be obtained by the
application of Fourier's Law of Conduction at the �n base:

_Q�n = �kAb

d�(0)

dx
= �k AmC2 [W ]

Fin Resistance

The �n resistance is de�ned as:

R�n =
Tb � Tf

_Q�n

=

"
1 +

mL�

Bic

# hp
hPkA�

i
�1

The general solution and corresponding relations can be used for any constant
cross-section �n which has contact resistance and end cooling. The special cases
which are frequently presented in heat transfer texts arise from the previous
general solution and results.

Special Cases of the General Solution

Perfect Contact at the Fin Base and End Cooling

For this case we put hc � 109 or Bic � 109. This leads to �(0) = �b or T (0) = Tb.
The �n resistance becomes:

R�n =
1p

hPkA�

where the �n function � = �(mL;Bie). When Bie = 0, � = tanhmL, and
when Bie = 1, � = cothmL. Also when mL � 2:65, the numerical values of
tanhmL and cothmL are within 1% of 1, and therefore � � 1 for all values of
Bie.

Perfect Contact at Fin Base and Adiabatic Fin Tip

For this case we put Bic = 109 and Bie = 0. The �n function becomes: � =
tanhmL and the �n resistance relation becomes:

R�n =
1p

hPkA tanhmL
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In�nitely Long Fin With Perfect Contact at Fin Base

For this case we put Bic = 109 and take mL � 2:65, and the �n resistance
reduces to

R�n =
1p

hPkA

Criterion for In�nitely Long Fins

The criterion for in�nitely long �ns is

Lin�nitely long � 2:65

s
kA

hP

Temperature Distributions for the Special Cases

Perfect Contact at the Fin Base and Tip Cooling

�(x)

�b
= coshmx� � sinmx; 0 � x � L

where � is de�ned above.

Perfect Contact at Fin Base and Fin Tip

�(x)

�b
=

sinhm(L� x)

sinhmL
; 0 � x � L

Perfect Contact at Fin Base and Adiabatic Fin Tip

�(x)

�b
=

coshm(L� x)

coshmL
; 0 � x � L

In�nitely Long Fin With Perfect Contact at Base

�(x)

�b
= e�mx; 0 � x � L � 2:65

s
kA

hP

Fin E�ciency

The �n e�ciency is de�ned for �ns with perfect base contact and adiabatic tip
as:

� =
_Q�n

_Qideal

< 1
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where the ideal �n heat transfer rate is de�ned as

_Qideal =
Z L

0
hP � dx

which becomes
_Qideal = hP L�b

when �(x) = �b which corresponds to �ns whose thermal conductivity ap-
proaches in�nitely large values.
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