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ECE 309 M.M. Yovanovich

Week 2

Lecture 1

Review Stefan-Boltzmann Law of Radiative exchange between two isothermal
convex gray surfaces: A1; �1; T1 and A2; �2; T2.

� Radiative Film Coe�cient

� De�nition

_Qrad = hrA1(T1 � T2)

Equate to

_Q12 =
�(T 2

1
+ T 2

2
)(T1 + T2)(T1 � T2)

Rrad

to get

hr =
�(T 2

1
+ T 2

2
)(T1 + T2)

A1Rrad

The radiative �lm coe�cient is a nonlinear complex system parameter:

hr = f(�; T1; T2; A1; A2; �1; �2; F12)

� Multimode Heat Transfer Example.

Steady heat transfer through a plane wall: (k; L;A) with boundary tempera-
tures: (T1; T2) where T1 > T2. The heat transfer through the wall _Qcond leaves
the right boundary at temperature T2 and splits into two streams: _Qconv; _Qrad

and some of the heat goes to the uid at temperature T1 by convective heat
transfer, and the remainder goes to the surroundings at temperature Tsur by
radiative heat transfer.

_Qcond = _Qconv + _Qrad

by conservation of energy principle. Also we have the relations:

_Qcond =
T1 � T2

Rcond

; _Qconv = hA(T2 � T1); _Qrad = hrA(T2 � Tsur)



where Rcond = L=(kA).

� Equivalent thermal circuit with temperature nodes: T1; T2; T1; Tsur, three
thermal resistors: Rcond; Rconv; Rrad, and three throughputs: _Qcond; _Qconv; _Qrad

Lecture 2

� Fourier's Law of Conduction

~q = �krT

� Heat ux vector and temperature gradient in cartesian coordinates:

~q =~iqx +~jqy + ~kqz and rT =~i
@T

@x
+~j

@T

@y
+ ~k

@T

@z

and the unit vectors are: ~i;~j;~k, respectively.

� Heat ux components in cartesian coordinates (x; y; z):

qx = �k
@T

@x
; qy = �k

@T

@y
; qz = �k

@T

@z

Similarly,
� Heat ux components in cylindrical coordinates (r; �; z):

qr = �k
@T

@r
; q� = �k

1

r

@T

@�
; qz = �k

@T

@z

� Heat ux components in spherical coordinates (r; �; �):

qr = �k
@T

@r
; q� = �k

1

r

@T

@�
; q� = �k

1

r sin �

@T

@�

We will consider the one-dimensional conduction problems where T (x) and T (r).

� Steady conduction in plane wall: (A;L; k) without heat sources. The bound-
ary temperatures are: i) x = 0; T = T1 and ii) x = L; T = T2 < T1.
Conservation of energy principle applied to a di�erential control volume dV =
Adx gives

dQx

dx
dx =

d

dx

"
�k(T )A

dT

dx

#
dx = 0

Dividing by the di�erential volume gives

d

dx

"
�k(T )

dT

dx

#
= 0; 0 < x < L
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for the plane wall with temperature dependent thermal conductivity: k(T ).
Integrating once gives

k(T )
dT

dx
= C1

The second integration gives

Z T2

T1

k(T )dT = C1L

Left hand side can be written as

�
(T1 � T2)

(T1 � T2)

Z T2

T1

k(T )dT = �kave(T1 � T2)

where the average value of the thermal conductivity in the temperature interval
[T2; T1] is de�ned as

kave =
1

(T1 � T2)

Z T2

T1

k(T )dT

The constant of integration is

C1 = �kave
(T1 � T2)

L

To obtain the temperature distribution if k(T ) requires a particular relation
for the thermal conductivity as a function of temperature. Frequently a linear
relation is used for a small temperature range.

When k(T ) = k, a constant, then the equation becomes

d2T

dx2
= 0; 0 < x < L

Two integrations give
T (x) = C1x+ C2

Applying the boundary conditions to �nd the constants of integration gives the
linear temperature distribution:

T (x) = T1 �
x

L
(T1 � T2); 0 � x � L

� Heat ow rate, thermal resistance and shape factor.

Qx = �kA
dT

dx
= kA

(T1 � T2)

L

3



R =
(T1 � T2)

Qx

=
L

kA
; S =

1

kR
=

A

L

Lecture 3

� Notation used in text: q
0

; q
00

; q
000

denote heat transfer rate per unit length, per
unit area, and per unit volume respectively.

� Steady Conduction in Hollow Cylinder: a � r � b << L where L is the
cylinder length. The thermal conductivity of the cylinder wall is k = k(T ). The
inner and outer boundaries are maintained at uniform temperatures:
T (r = a) = T1; T (r = b) = T2 < T1. The temperature in the cylinder wall is
one-dimensional, i.e., T (r).

� Fourier's Law of Conduction gives the heat ow rate at the inner surface of
the di�erential control volume CV located at r:

Qr = qrAr = �k(T )2�rL
dT

dr

where the conduction area is Ar = 2�rL.
The heat ow rate out of the CV through the surface at r + dr is by Taylor
series expansion of Qr:

Qr +
dQr

dr
dr +HOTTSE

If distributed volumetric heat sources are not present and the conduction is time
independent, the conservation of energy principle states that the conduction rate
into the CV must equal the conduction rate out of the CV. Therefore

Qr = Qr +
d

dr

 
�k(T )2�rL

dT

dr

!
dr

Cancelling the Qr terms and dividing through by the control volume dV =
2�rLdr gives the ordinary di�erential equation:

1

r

d

dr

 
k(T ) r

dT

dr

!
= 0; a < r < b

The boundary conditions are

r = a; T = T1 and r = b; T = T2 < T1
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The ODE cannot be integrated for arbitrary k(T ). We will assume that k =
constant. Remove k and divide through by k to get the ODE:

1

r

d

dr

 
r
dT

dr

!
= 0; a < r < b

which can be integrated twice:

r
dT

dr
= C1 or

dT

dr
=

C1

r

and
T (r) = C1 ln r + C2

Use the boundary conditions to get two relations:

T1 = C1 ln a+ C2 and T2 = C1 ln b+ C2

Substracting to eliminate C2 gives for C1

�C1 =
(T1 � T2)

ln
b

a

>From either relation C2 can be found. Taking the �rst relation gives:

C2 = T1 � C1 ln a

Substituting into the general solution gives the temperature distribution in the
cylinder wall:

T1 � T (r)

T1 � T2

=
ln

r

a

ln
b

a

; a � r � b

� Heat ow rate through cylinder wall.

Qr = �k2�rL
dT

dr
= �k2�rL

C1

r
= �C12�Lk = 2�Lk

(T1 � T2)

ln
b

a

� Thermal resistance and shape factors

R =
(T1 � T2)

Qr

=
1

2�Lk
ln

b

a

5



and

S =
1

kR
=

2�L

ln
b

a
These are important results which will be used to obtain resistances of systems.

� Steady Conduction through Wall of Hollow Sphere.

� Outline of the procedure which is similar to that of the hollow cylinder.

� Fourier's Law of Conduction in a Sphere where T (r):

Qr = qrAr = �k4�r
2
dT

dr

� Apply conservation of energy principle on di�erential CV where dV = 4�r2dr
to get the ODE:

1

r2
d

dr

 
k(T )r2

dT

dr

!
= 0; a < r < b

� Boundary conditions are

r = a; T = T1 and r = b; T = T2 < T1

� Integrate twice to get the general solution of ODE if the thermal conductivity
is constant. ODE becomes

1

r2
d

dr

 
r2
dT

dr

!
= 0; a < r < b

� The general solution is

T (r) =
C1

r
+ C2

� Temperature distribution is

T1 � T (r)

T1 � T2

=
1=a� 1=r

1=a � 1=b
; a � r � b

� Heat ow rate through spherical wall.

Qr = �k4�r
2
dT

dr
= 4�k(T1 � T2)

1

1=a� 1=b
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� Thermal resistance and shape factor of the spherical wall.

R =
(T1 � T2)

Qr

=
1

4�k

�
1

a
�

1

b

�

and

S =
1

kR
=

4�

1=a� 1=b

� Isolated Sphere
Let b=a!1 to get results for isolated sphere in an in�nite substance of thermal
conductivity k.

R =
1

4�ak
and S = 4�a

� Capacitance of an Isolated Sphere.

C = 4�a�

where � is the permittivity of space.

� Electrical and Thermal Analogs
Observe that the electrical capacitance is related to the thermal resistance and
shape factor

C

�
= 4�a = S =

1

kR
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