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The attached material is a summary of some of the important results for forced and natural
convection heat transfer from isothermal or iso
ux surfaces. Correlation equations for local
and area-average heat transfer for external and internal 
ow are given.

Many empirical and analytic correlation equations have been developed for the local and
area-average values of the Nusselt number for limited ranges of the forced and buoyancy-
induced 
ow parameters: Reynolds, Peclet, Grashof and Rayleigh numbers; for laminar or
turbulent 
ows; and for various 
uids which are characterized by the Prandtl number.

One should consult the course text for the de�nitions of the various dependent and
independent parameters and the basis for the 
uid properties evaluation for the particular
correlation equation.

This summary does not cover the numerous forced and buoyancy-induced internal 
ows
through and within complex con�gurations. One should consult the course text or the several
handbooks which deal with these topics.

1. Laminar and Turbulent Forced External Flow

De�nitions of Local and Area-average Values

hx =
�k@T (x; y = 0)

@y
(Tw � T1)

, h = 1
L

Z L

0

h(x) dx = 2h(x = L)

Nux =
hxx
k

, Rex =
U1x
�

NuL =
�hL
k , ReL = U1L

�
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Flat Plate, Laminar Boundary Layer Flow

Correlation Limits Conditions

� = 5xRe�1=2x 100 < Rex < 500; 000 Local

Cf;x = 0:664Re�1=2x 100 < Rex < 500; 000 Local

Cf;x = 1:328Re�1=2x 100 < Rex < 500; 000 Area-Average

� = �Pr�1=3 100 < Rex < 500; 000 Local

Nux
Re1=2x

= 0:3387Pr1=3 100 < Rex < 500; 000 Local, UWT, Pr !1

Nux
Re1=2x

= 0:564Pr1=2 100 < Rex < 500; 000 Local, UWT, Pr ! 0

Nux
Re1=2x

= 0:3387Pr1=3h
1 + (0:0468=Pr)2=3

i1=4 100 < Rex < 500; 000 Local, UWT, 0 < Pr <1

Nux
Re1=2x

= 0:4637Pr1=3 100 < Rex < 500; 000 Local, UWF, Pr!1

Nux
Re1=2x

= 0:886Pr1=2 100 < Rex < 500; 000 Local, UWF, Pr! 0

Nux
Re1=2x

= 0:4637Pr1=3h
1 + (0:0205=Pr)2=3

i1=4 100 < Rex < 500; 000 Local, UWF, 0 < Pr <1

NuL
Re

1=2
L

= 0:6774Pr1=3h
1 + (0:0468=Pr)2=3

i1=4 100 < ReL < 500; 000 Average, UWT, 0 < Pr <1

NuL
Re

1=2
L

= 0:9274Pr1=3h
1 + (0:0205=Pr)2=3

i
1=4 100 < ReL < 500; 000 Average, UWF, 0 < Pr <1

Flat Plate, Turbulent Boundary Layer Flow

Correlation Limits Conditions

� = 0:37xRe�1=5x 5� 105 < Rex < 108 Local

Cf;x = 0:0592Re�1=5x 5� 105 < Rex < 108 Local

Cf;L = 0:074Re
�1=5
L � 1742Re�1L Rex;c = 5� 105 Mixed-Average

� = �Pr�1=3 100 < Rex < 500; 000 Local

Nux = 0:0296Re4=5x Pr1=3 100 < Rex < 500; 000 Local, UWT, 0:6 < Pr < 60

NuL =
�
0:037Re

4=5
L � 871

�
Pr1=3 100 < Rex < 500; 000 Average, UWT, 0:6<Pr<60
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Cross Flow Over Circular Cylinders

Correlation Limits Conditions

NuD=S?D+
0:6Re1=2D Pr1=3"
1+

�
0:4

Pr

�2=3#1=4
"
1+

�
ReD

282; 000

�
5=8
#
4=5

100<ReD<107
Average;UWT;

0 < Pr <1

S?D = 4
�

 
1 + 0:869(L=D)0:76

0:5 + L=D

!
0 � L=D � 8 ReD ! 0

S?D = 4p
�

0
@ 1q

1 + 0:5D=L

1
A 1
ln(2L=D)

L=D � 8
ReD ! 0;

Asymptote

Flow Over Spheres

Correlation Limits Conditions

CD = 0:4 + 24
ReD

+ 6

1 +
q
ReD

0�ReD�2�105 Total Drag, �10%

NuD=2+
0:6Re

1=2
D Pr1=3"

1 +
�
0:4

Pr

�2=3#1=4
"
1+

�
ReD

282; 000

�
5=8
#4=5

100<ReD<107
Average;UWT;

0 < Pr <1

2. External Flow Over Isothermal Oblate and Prolate Spheroids

The following universal correlation equation:

NupA = Nu
0p
A +

2
40:15

 
Pp
A

!1=2

Re
1=2p
A
+ 0:35Re0:566p

A

3
5Pr1=3

was developed by Yovanovich (1988) from two accurate correlation equations proposed by
Yuge (1960) for air cooling of isothermal spheres, and the correlation equations developed by
several researchers for convection heat and mass transfer from isothermal oblate and prolate
spheroids.

In the above correlation equation the Nusselt and Reynolds numbers are both based

on the length scale L =
p
A. The di�usive limit Nu

0p
A corresponding to Re ! 0 is the

dimensionless shape factor S?p
A
.

Yovanovich (1988) blended the two Yuge equations and introduced the parameter P=
p
A

which accounts for the blockage of the body as the 
uid 
ows around it. Also the Yuge
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correlation equations which were developed for air were extended to account for large Prandtl
number 
uids, i.e. Pr > 0:7. The correlation equation is valid for the wide Reynolds number
range: 0 � RepA < 2 � 105.

The general correlation equation is in very good agreement with numerous analytical and
experimental correlation equations over various ranges of the Reynolds number for Pr = 0:7.

It is also in good agreement with the empirical correlation equation of Pasternak and
Gauvin (1960) which was developed from 20 di�erent convex body shapes to account for
both body shape and orientation. The body length scale which they proposed was based
on the ratio of the total surface area of the body divided by the maximum projected area
of the body perpendicular to the air 
ow. They achieved good correlation of their heat and
mass transfer data with a single power-law equation which was converted to the body scale
length L =

p
A

NupA = 0:914Re0:514p
A
Pr1=3 886 � RepA � 8860

This equation correlated data for spheres, �nite circular cylinders with axes parallel and
perpendicular to the 
ow, prisms, cubes in various orientations, and hemispheres positioned
with the 
at section at the rear. The turbulence intensity was reported to be in the range:
9 to 10% in all their experiments. The single equation correlated all data with a deviation

of only �15% in the speci�ed range.

The general correlation equation agrees with the Pasternak-Gauvin correlation equation
within the given Reynolds number range to within 15%. Therefore, the general equation of
Yovanovich can be used for arbitrary convex isothermal bodies over a much wider range of
the Reynolds number.

3. Laminar Forced Internal Flow

De�nitions and Notation

Reynolds number: ReD =
UDh

�

Laminar Flow: ReD < 2300

Hydraulic Diameter: Dh = 4A
P

=
Cross Section Area

Wetted Perimeter

Dimensionless axial distance: x? = x
DhPe

= x
DhRePr

= �
4

1
Gz

Local, Isothermal Wall, Nusselt number: Nux;UWT =
qw(x)

[Tw � Tm(x)]
Dh
k

Mean-value, Isothermal Wall, Nusselt number: Num;UWT = qw
[Tw � Tm(x)]

Dh
k

Local, Iso
ux Wall, Nusselt number: Nux;UWF = qw
[Tw(x)� Tm(x)]

Dh
k

Mean-value, Iso
ux Wall, Nusselt number: Num;UWF = qw
[Tw(x)� Tm(x)]

Dh
k
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Local Nusselt Number for Thermally Developing Flow

Churchill and Ozoe (1973) propose the following correlation equations for the local Nus-
selt number for the developing thermal �eld for the UWT and UWF cases:

Nux;UWT + 1:7

5:357
=

"
1 +

�
388

�
x?
��8=9#3=8

� 5 %

Nux;UWF + 1

5:364
=

"
1 +

�
220

�
x?
��10=9#3=10

� 5 %

They developed these expressions based on asymptotic solutions valid for small and large
values of x?.

Area-Average Nusselt Number for Fully Developed Hydraulic, Thermally Developing Flow

The following approximations of Shah (1975) for fully developed hydraulic 
ow and ther-
mally developing in an isothermal (UWT ) or an iso
ux (UWF ) circular pipe are based on the
analytic solutions of the Graetz-type problems. Expressions for area-mean Num;UWT ; Num;UWF

versus the local dimensionless position x? = (x=Dh)=(RePr) are given below. The approxi-
mations are quite accurate over the entire range: 0:005 < x? � 1: The maximum di�erence
with respect to accurate analytic results is less than 4:4%.

For very small values x? < 0:005 the approximate expressions approach the Leveque
asymptotes which were obtained by the method of similarity transformation. For large values
x? � 0:25, the approximations go to the fully-developed hydraulic and thermal solutions:
NuUWT = 3:656 and NuUWF = 4:354 which were obtained by the method of separation of
variables which leads to a di�erential equation of the Sturm-Liouville type. The solution is
presented as an in�nite series expansion of eigenfunctions and corresponding eigenvalues.

Num;UWT =

8><
>:

1:615

(x?)1=3
� 0:2; 0:005 < x? < 0:03

3:656 + 0:0499
x?

; x? � 0:03

Num;UWF =

8><
>:

1:953
(x?)1=3

; x? � 0:03

4:354 + 0:0722
x?

; x? > 0:03

The circular cylinder results may be used to �nd approximate values for isothermal and
iso
ux tubes having other cross-sections (e.g. square or triangular pipes) by the use of the
hydraulic diameter in the Nusselt and Reynolds numbers.
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4. Laminar and Turbulent Natural External Flow

De�nitions of Local and Area-average Values

yhx =
�k@T (x; y = 0)

@y
(Tw � T1)

, �h = 4
3
h(x = L)

Nux =
hxx
k

, NuL =
�hL
k

yGrx =
g� (Tw � T1)x

3

�2
, Rax =

g� (Tw � T1)x
3

�� , Rax = GrxPr

yGrL =
g� (Tw � T1)L

3

�2
, RaL =

g� (Tw � T1)L
3

�� , RaL = GrLPr

yFor UWF cases, use the midpoint temperature di�erence:

(Tw(x = L=2) � T1)

Flat Plate, Buoyancy-Induced Laminar Boundary Layer Flow

Nux
Ra1=4x

= 0:5027 104 < Grx < 109 Local, UWT, Pr !1

Nux
Ra1=4x

= 0:6004Pr1=4 104 < Grx < 109 Local, UWT, Pr ! 0

Nux
Ra1=4x

= 0:5027h
1 + (0:492=Pr)9=16

i
4=9 104 < Grx < 109 Local, UWT, 0 < Pr <1

Nux
Ra1=4x

= 0:5627 104 < Gr?x < 109 Local, UWF, Pr!1

Nux
Ra1=4x

= 0:6922Pr1=4 104 < Gr?x < 109 Local, UWF, Pr! 0

Nux
Ra1=4x

= 0:5627h
1 + (0:437=Pr)9=16

i4=9 104 < Gr?x < 109 Local, UWF, 0 < Pr <1

NuL
Ra

1=4
L

= 0:6703h
1 + (0:492=Pr)9=16

i
4=9 104 < GrL < 109 Average, UWT, 0 < Pr <1

NuL
Ra

1=4
L

= 0:7503h
1 + (0:437=Pr)9=16

i
4=9 104 < Gr?L < 109 Average, UWF, 0 < Pr <1
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Flat Plate, Buoyancy-Induced Turbulent Boundary Layer Flow

NuL =
0:150Ra1=3Lh

1 + (0:492=Pr)9=16
i
16=27 109 < GrL < 1012

Average;UWT;

0 < Pr <1

NuL =

8><
>:0:825 +

0:387Ra1=6Lh
1 + (0:492=Pr)9=16

i
8=27

9>=
>;

2

10�1 < RaL < 1012
Average;UWT;

0 < Pr <1

Long Horizontal Isothermal Circular Cylinders, Laminar and Turbulent Flow

NuD =

2
40:60 + 0:387Ra1=6D

[1 + (0:559=Pr)9=16]
8=27

3
5
2

0 < Pr <1; 10�5 < RaD � 1012

Finite Horizontal Isothermal Circular Cylinders, Laminar Flow

NuD = S?D +
0:518Ra1=4D

[1 + (0:559=Pr)9=16]
4=9

0 < Pr <1; 0 < RaD � 109

Isothermal Spheres, Laminar Flow

NuD = 2 +
0:589Ra

1=4
D

[1 + (0:469=Pr)9=16]
4=9

; 0 < Pr <1; 0 � RaD < 1011

5. General Correlation Equation for Arbitrary Isothermal Convex Bodies

NuL = Nu0L + F (Pr)GLRa
1=4
L ; 0 < Pr <1 0 � RaL � 1011

where the characteristic body length is L =
p
A and A is the total active or wetted surface

area. The universal Prandtl number function valid for all isothermal convex bodies is given
by:

F (Pr) =
0:670

[1 + (0:5=Pr)9=16]
4=9

which for air (Pr = 0:71) has the value F (Pr = 0:71) = 0:513. The di�usive limit Nu0L or
shape factor S?L with L =

p
A is a weak function of body shape and its aspect ratio. For
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example, its range is 3:20 � S?p
A
< 7:55 for a solid circular cylinder whose length-to-diameter

ratio varies from 0 (a circular disk) to 100 (very long cylinder). For long axisymmetric
bodies (e.g. circular cylinder and long square cuboid) the shape factor can be accurately

approximated by SpA = 4
q
L=D= ln(2L=D) where D is the diameter of the circular cylinder

and it is equal to the geometric-mean of the diameters of the inscribed and circumscribed
circular cylinders respectively, and L is the length.

The body-gravity function GL accounts for the buoyancy-induced 
ow over the convex
body. It is a relatively weak function of the body shape and its orientation with respect
to the gravity vector when L =

p
A is used and the complex convex body (e.g. a cuboid)

has dimensions (H;W;L) which do not go to zero H 6= 0 in the direction parallel to the
gravity vector (e.g. a horizontal rectangular plate), and the other dimensions (W;L) which
are perpendicular to the gravity vector do not go to1. Otherwise the body-gravity function
will lie in the narrow range 0:9 < GpA < 1:1. For example the body-gravity function for a
sphere, horizontal cube, and a short circular cylinder L=D = 1 with active sides and ends in
the horizontal, inclined at 45 � degrees and vertical orientations have the empirical values:
GpA = 1:023; 0:951; 1:019; 1:004; 0:967 respectively. These empirical values are within 3% of
the theoretical values. There are many other complex convex bodies which have body-gravity
functions close to unity.

The body-gravity function for a horizontal cuboid (H;W;L) where theH�side is parallel
to g and the other two sides (W;L) are perpendicular to g may be used to estimate GpA
for convex bodies which have surfaces which are parallel and perpendicular to g. The body-
gravity function for cuboids is given by:

GpA = 21=8
"
0:625L4=3W +H(L+W )4=3

(HW +HL+ LW )7=6

#3=4

The above analytic-empirical relationship reduces to several important special cases.

Horizontal Cube, All Surfaces Active: H = W = L = 1

GpA = 0:984

Horizontal Rectangular Plates, Both Sides Active: H = 0; L � W

GpA = 0:7665(L=W )1=8;
L

W
� 1

Horizontal Square Plates, Both Sides Active: H = 0; L = W

GpA = 0:7665
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Vertical Rectangular Plates, Both Sides Active: L = 0

GpA = 21=8(W=H)1=8; 0 <
W

H
<1

If the vertical plate has one side active, omit the factor 21=8.

Vertical Square Plate, Both Sides Active: H =W;L = 0

GpA = 21=8 = 1:0905

If the vertical square plate has one side active, omit the factor 21=8 and GpA = 1.

Long Horizontal Square Prisms with Active Ends: H = W << L

GpA = 0:856
�
L

H

�1=8

;
L

H
> 10

Long Vertical Square Prisms with Active Ends: L =W; 0 � H=W <1

GpA = 21=4
(0:250 +H=W )3=4

(0:500 +H=W )7=8

Heated Horizontal Rectangular Plates Facing Upward or Downward: H = 0; L=W � 1

GpA = 21=8
�
L

W

�1=8

facing upward

GpA =
21=8

2

�
L

W

�1=8

facing downward

Other Body Shapes

The body-gravity function for other body shapes such as the �nite circular cylinder with
active sides and ends in the horizontal and vertical orientations can be accurately approxi-
mated by using the results for the square prism with active ends in the horizontal or vertical
orientations.
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