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Nonhomogeneous PDE

Given the transient conduction equation with distributed volumetric heat sources

S > 0:
o0 5 1o
oz  k  adt’

with 6(z,t) = T'(z,t) — T, where T, represents the ambient temperature.

t>0, 0<z<lL

Boundary Conditions (BCs) and Initial Condition (IC)
The BCs and IC are:

6(0,t
z =0, %:O, and z=0L, 6(L,t)=0,=T,— T
T

and

f(x,0)=0 for 0<z<L

The BCs are homogeneous Neumann and nonhomogeneous Dirichlet respec-
tively, and the IC is homogeneous.

Solution Procedure

The solution will be written as
f(z,t) = v(z) + w(z,t)

where v(z) is the steady-state solution for ¢ — oo, and w(z,t) is the auxiliary
transient solution. Substitute into the given PDE to get

1
Vgg + Wag + 7 = —W;
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Now separate the above equation into two equations which are:

1) Nonhomogeneous ODE:

2) Homogeneous PDE:

1
Wee = —wy, t>0, 0<ae<L
(87

Solution of Nonhomogeneous ODE

The solution of the nonhomogeneous ODE 1is

dv Sz Sx?
%:—?4-01 and U($):—§+01$+C2

The boundary conditions are

=0 % — d_’U + 6_’w =0
T=Y dr dr Or
Therefore both
dv d ow 0
— = and — =
dz Oz

At the other boundary
e=1L, 6(Lt)=v(L)+w(L,t)=146L

We must select

v(L) =40, and w(L,t)=0

The two boundary conditions applied to the solution v(z) requires that

SL?
01:0 and C2:§+9L
The steady-state solution is therefore
Sz? SL?
=2 42 <g<
v(x) 2k+2k +6r, 0<z<L

Solution of Homogeneous PDE



The transient problem is

1
Wee = —wy, t>0, 0<ae<L
(87

with homogeneous boundary conditions:

z =0, g—::() and z =L, w(L,t)=0

and nonhomogeneous initial condition:
t=0, w(z,0)=400)—v(z)=—-v), 0<z<L
The Separation of Variables Method (SVM) leads to the solution
w(z,t) = T(£)X(x) = eV [C cos Az + D sin Az

and
g—w =Tt)X'(z) = g~ Nt [—CAsin Az + DA cos Az]
T

The two homogeneous boundary conditions require
z=0, X'(0)=0 and z=L, X(L)=0

The first boundary condition (homogeneous Neumann condition) requires D =
0, which removes the sine function from the solution. The second boundary
condition (homogeneous Dirichlet condition) requires

nmw

Ccos AL =0, thus cosAL =0, therefore A, = A

1,3,5,...,0dd integers
or
(2n — )7

An = )
2L

1,2,3,...
for all positive integers.
The general term of the auxiliary transient solution is

2n — l)mwa

wy(z,t) = Ce~Bnm1lmat/(4L%) (g (( 57 ) , n=123...

Application of the superposition principle gives the general solution:

(2n — D)7z

w(x,t) = Z C e~ n-imat/(4L7) (g ( 5T

n=1

), t>0, O0<z<lLl




Fourier Coefficients for Temperature

To find the Fourier coefficients C,, we apply the initial condition to get the
Fourier cosine series:

(2n — 17w

—v(w):ZCncos(T), t>0, 0<z<lL
n=1

Application of the orthogonality property of cosines gives the relation:

2 rL (2n — D)7z
Cn_f/o —v(w)cos(T)dw, n=1213...

Substitution of the steady-state solution and integrating we get, after some
calculus, the final relationship for the Fourier coefficients:

(-1)*16 [SL? 5
C,= T, — T — 1/4) 1|, =1,2,3,...
(2n — 1)3w 7T2k+(L )(n m /) "
o Alternative form of the Fourier coefficients for temperature:
S O | .
Cn——2 lkLA2+m] sm)\nL

and

AL = (20 — 1)%, n=1,23,...
Note that the units of the Fourier coefficients are K.

The 6(x,t) solution can be written in the semi-dimensionless form:

SL? - . o1
O, 1) = S(1=2)+ 3 Cue CrPr/4) oy (M
n=1

5), >0, 0<¢é<1

with dimensionless time 7 = «at/L? and dimensionless position ¢ = z/L.

The temperature T'(¢, 7) is obtained from
T(€7T) = 9(€7T) + TOO = ’U(g) + ’w(€77') + TOO

Instantaneous Heat Transfer Rate

The instantaneous heat transfer rate through the boundary at * = L can be
obtained from the Fourier Law of Conduction:

o) — it (ae(x,t)) - kA (ae(g,f))éﬂ

Oz o L ¢
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which gives

EA & 2 (2
m0:SAL+7TZﬂLé“””““K >0
n=1
where the conduction area is A = wD?/4, and the Fourier coefficients E,, for
the heat flow rate are obtained from the relation:

B = (- o, 2T

n=123...
The final form of the expression for the Fourier coefficients for the heat flow
rate 1s

-8 SL?

E, = (2n — 1) | 7% +(TL_TOO)(n2_n+1/4)] ;o n=1,23...

e Alternative form of Fourier coefficients for Q(¢)

S 4
kLN I\,

F,=—-C, )\, sin\, L =2\, l ] sin? A\, L

where E,, = LF,, and

ML:@n—Dg n=123,...

Maple Solutions

The complete solution of the given nonhomogeneous PDE is presented in the

Maple worksheets: PROJ2S99SOL.MWS and PROJ2S99SOL2.MWS. The
temperature f(x,t) or (£, 7) and the instantaneous heat transfer rate through

the boundary at © = L or ¢ = 1 are presented in the Maple worksheets.

System Parameter Values

D =5mm

L =100mm
E=80W/(m-K)
a=12x10""m?/s
S =2x10°W/m?
T, = 70°C

T, =20°C




Calculations of Instantaneous Heat Transfer Rates

Table 1: Calculated Heat Flow Rates, Q(7), [W]

T Q(r)
0.01 | —3.988
0.1 | 0.0001216
1.0 3.524
o0 3.927

The calculated heat flow rates presented in Table 1 are based on the summation
of the first 200 terms of the transient part of the solution. An examination of
the solution reveals that the series converges very quickly for larger values of the
dimensionless time 7, and therefore, only a few terms are required to provide
accurate values when 7 > 0.1.

The heat flow rate is into the rod when 7 = 0.01. At 7 = 0.1, the heat flow
rate is out of the rod and its value is small. When 7 = 1.0, the heat flow rate
is approximately 90% of the steady-state value of Q(o0) = 3.927.

Plots of Temperature

The plots of the steady-state solution T'(¢, 00) = v(€) + T, and the transient
solution #(&,7) + T for dimensionless times of 7 = 0.01,0.1, and 1.0 are pre-

sented in the Maple worksheets:
PROJ2S99SOL.MWS and PROJ2S99SOL2.MWS.




