
PROJ1S99SOL.TEX

UNIVERSITY OF WATERLOO

Department of Mechanical Engineering

ME 303 Advanced Engineering Mathematics

M.M. Yovanovich Project 1 Solution, June 4, 1999

Given the linear, second order nonhomogeneous PDE:
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with parameters: S [W=m3], and k [W=m �K]. The units of the dependent
variable is T [K], The units for the other variables are: r [m] ; t [s], and a [m].

Boundary conditions and initial condition are

@T (0; t)

@r
= 0; T (a; t) = 0 and T (r; 0) = 0; 0 � r � a

There is no convenient temperature scale and time scale in the problem state-
ment.

1) What are the units of �?
The units of the three terms are identical. The units can be obtained from the
�rst or second term. The units of the second term (source term) of the PDE
are [W=m3] = [W=m �K] = [K=m2].
Since the units of the transient term (energy storage term) are identical we have
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The units of the thermophysical parameter � are [m2=s].

2) Obtain nondimensional form of PDE, BCs and IC. Use the following dimen-
sionless parameters:
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where Tr is an arbitrary reference temperature, tr is an arbitrary reference time,
and a is the radius of the solid circular cylinder.

Nondimensionalize the �rst term. Set T = �Tr where Tr is a constant.
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Finally,
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Note which parameters determine the units at each step of the nondimension-
alization process.

Nondimensionalize the transient term in a similar manner.
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The units are determine by the parameters: Tr=tr.

The PDE can now be written as
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The terms are still dimensional. Observe that the units of the �rst term are
determined by the parameters Tr=a

2, and the units of the third term are de-
termined by the parameters Tr=(tr �). Multiple through by a2=Tr to get the
nondimensional form of the PDE
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Note that by inspection of the second and third terms of the PDE, we �nd that
the units of the group S a2=k are [K], and the units of the group a2=� are [s].
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Tberefore S a2=k represents a temperature scale, and a2=� represents a time
scale of the system.

The nondimensional form of the BCs are
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and
T (a; t) = Tr�(1; � ) = 0 or �(1; � ) = 0

The nondimensional form of the IC is

T (r; 0) = Tr�(�; 0) = 0; 0 � r � a or �(�; 0) = 0; 0 � � � 1

3) Set the reference temperature: Tr = Sa2=k and the reference time: tr = a2=�
in the PDE to obtain the �nal dimensionless form without parameters:
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with homogeneous BCs and IC:

@(�(0; � ))
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= 0; �(1; � ) = 0 and �(�; 0) = 0; 0 � � � 1

4) Obtain the solution of the steady-state case where @�=@� = 0.
The PDE becomes the ODE with �(�)
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and homogeneous BCs:

@(�(0; � ))
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= 0; �(1; � ) = 0

This ODE can be integrated twice in a straight forward manner. Here are the
steps:
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Dividing by � gives the derivative:
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The �rst BC at � = 0 can be used now to eliminate the second term which is
unbounded at � = 0. Set C1 = 0 to give
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Integrate a second time to get
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Use the BC at � = 1 to �nd C2.
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The dimensionless steady-state solution is
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The solution of the ODE can be obtained by means of other less direct proce-
dures such that those presented in an ODE course.

5) Find �(0) and T (0) from the solution.
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4
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6) Given the Fourier Law of Conduction at the cylinder boundary:

Q = �k2�a
@T (r)

@r
; r = a

per unit length of the cylinder.
(a) Obtain the nondimensional form and call it Q?.
(b) Determine Q from the nondimensional solution.

Q = �k2�a

 
@T (r)

@r

!
r=a

= �k2�a

 
Tr
a

@�

@�

!
�=1

= �2�Sa2
 
@�

@�

!
�=1

4



Now we can de�ne a dimensionless heat transfer rate at the cylinder boundary:
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The dimensionless heat transfer rate can be obtained from the dimensionless
solution:
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The dimensional heat transfer rate at the boundary is obtained from the de�-
nition and the above result:

Q = 2�Sa2Q? = �a2S

per unit length of the cylinder.
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