STURM-LIOUVILLE PROBLEM (SLP)

The separation of variables method when applied to second-order linear homogeneous PDEs frequently leads to second-order homogeneous ODEs of the type:

$$rac{d}{dx}\left(p(x)rac{dy(x)}{dx}
ight) + \left[q(x) + \lambda r(x)
ight]y(x) = 0, \qquad a \leq x \leq b$$

or in the equivalent form

or

$$[p(x)y']' + [q(x) + \lambda r(x)]y = 0,$$
 $a \le x \le b$

where p, q and r are given functions of the independent variable x in the interval $a \le x \le b$, λ is a parameter, and y(x) is the dependent variable. This equation is known as the **Sturm-Liouville Differential Equation (SLDE)**. It is said to be **regular** in the interval [a, b] if p(x) and r(x) are positive in the interval. The r(x) is called the weight function, and it appears in the **orthogonality relation** to be discussed below.

The general second-order differential equation of the form:

$$a_2(x)y''(x) + a_1(x)y'(x) + [a_0(x) + \lambda]y(x) = 0, \qquad a \le x \le b$$

can be rewritten in the self-adjoint form by letting

$$p(x) = e^{\int \frac{a_1(x)}{a_2(x)} dx}, \qquad q(x) = \frac{a_0(x)}{a_2(x)} p(x), \qquad \text{and} \qquad r(x) = \frac{p(x)}{a_2(x)}$$

For a given value of λ two linearly independent solutions of a regular **SLDE** exist in [a, b].

The Boundary-Value Problem (BVP) containing the SLDE, $a \le x \le b$, along with the separated homogeneous end conditions:

1.
$$y_m(a) = y_m(b) = 0$$
; $y_n(a) = y_n(b) = 0$ for both m and n

2.
$$y'_m(a) = y'_m(b) = 0$$
; $y'_n(a) = y'_n(b) = 0$ for both m and n

or a linear combination of the above two homogeneous conditions:

3a.
$$a_1y_m(a) + a_2y'_m(a) = b_1y_n(a) + b_2y'_n(a) = 0$$

and

3b.
$$a_1y_m(b) + a_2y'_m(b) = b_1y_n(b) + b_2y'_n(b) = 0$$

where the indices m and n denote different solutions, forms a **Sturm-Liouville Problem SLP**.

If the coefficients a_1, a_2 and b_1, b_2 are real constants such that $a_1^2 + a_2^2 \neq 0$ and $b_1^2 + b_2^2 \neq 0$, and the **SLDE** is regular, then the problem is a regular **SLP**.

The trivial solution $y_m(x) = 0$ and $y_n(x) = 0$ satisfies the **SLP** for any value of the parameter λ .

Nontrivial solutions are called **eigenfunctions** or **characteristic functions** of the **SLP**.

The corresponding values of λ_m or λ_n for which the nontrivial solutions exist are known as eigenvalues or characteristic values.

- 1. All the eigenvalues λ are real.
- 2. There is an infinite set of eigenvalues:

$$\lambda_1 < \lambda_2 < \lambda_3 < \ldots < \lambda_n < \lambda_{n+1} < \ldots \rightarrow \infty$$

- 3. Corresponding to each **eigenvalue**, λ_n , there is one **eigenfunction** (i.e., a nonzero solution) denoted $y_n(x)$ (which is unique to within a multiplicative constant). $y_n(x)$ has exactly n-1 zeros for a < x < b.
- 4. If $y_n(x)$ and $y_m(x)$ are two different eigenfunctions (corresponding to $\lambda_n \neq \lambda_m$), then they are defined to be **orthogonal** with respect to the **weight** function r(x) on the interval $a \leq x \leq b$; i.e., they satisfy:

$$\int_{a}^{b} r(x)y_{n}(x)y_{m}(x)dx = 0 \quad \text{if} \quad \lambda_{n} \neq \lambda_{m}$$

the so-called orthogonality property of eigenfunctions.

If the eigenfunctions: y_n and y_m corresponding to the eigenvalues: λ_n and λ_m respectively, are solutions of the **SLDEs**:

$$[py_n']' + [q + \lambda_n r] y_n = 0$$

and

$$[py_m']' + [q + \lambda_m r] y_m = 0$$

Multiplying the first **SLDE** by y_m and the second **SLDE** by y_n and then subtracting the first from the second gives:

$$[py'_{m}]'y_{n} - [py'_{n}]'y_{m} + (\lambda_{m} - \lambda_{n})ry_{n}y_{m} = 0$$

However,

$$\frac{d}{dx}(\left[py_m'\right]y_n - \left[py_n'\right]y_m) = \left[py_m'\right]'y_n - \left[py_n'\right]'y_m$$

Using this relationship we have

$$\frac{d}{dr}\left(p\left[y_m'y_n - y_n'y_m\right]\right) = \left(\lambda_n - \lambda_m\right)ry_ny_m$$

Integrating the last equation with respect to x over $a \leq x \leq b$ we find:

$$\left[p\left(y_{m}^{\prime}y_{n}-y_{n}^{\prime}y_{m}
ight)
ight]_{a}^{b}=\left(\lambda_{n}-\lambda_{m}
ight)\int_{a}^{b}ry_{n}y_{m}dx$$

We note that the eigenfunctions y_n and y_m satisfy the homogeneous end

conditions:

$$a_1 y_n(a) + a_2 y'_n(a) = 0$$

 $a_1 y_m(a) + a_2 y'_m(a) = 0$

and

$$b_1 y_n(b) + b_2 y'_n(b) = 0$$
$$b_1 y_m(b) + b_2 y'_m(b) = 0$$

Excluding the trivial case $a_1 = a_2 = b_1 = b_2 = 0$, then for the nontrivial solutions we must have:

$$y'_m(a)y_n(a) - y'_n(a)y_m(a) = 0$$

and

$$y'_m(b)y_n(b) - y'_n(b)y_m(b) = 0$$

The last equations allow us to write:

$$(\lambda_n - \lambda_m) \int_a^b r y_n y_m dx = 0$$

Since $\lambda_n \neq \lambda_m$, then

$$\int_a^b r y_n y_m dx = 0$$
 if $n \neq m$

which is the required orthogonality property of eigenfunctions.

Example 1 Solve the following Sturm-Liouville problem:

$$y'' + \lambda y = 0,$$
 $0 \le x \le \pi,$ $y(0) = 0,$ $y(\pi) = 0$

Solution 1 In this problem we have: $p(x) = 1, q(x) = 0, r(x) = 1, a = 0, b = \pi, a_1 = 1, a_2 = 0, b_1 = 1$ and $b_2 = 0$. The eigenvalues are $\lambda = n^2, n = 1, 2, 3, \ldots$. The eigenfunctions are

$$y_1 = \sin x, \qquad y_2 = \sin 2x, \qquad y_3 = \sin 3x, \dots$$

and, in general we have

$$y_n = \sin nx, \qquad n = 1, 2, 3, \dots$$

where the arbitrary constants have been set equal to one, since eigenfunctions are unique only to within a multiplicative constant.

Example 2 Solve the following Sturm-Liouville problem:

$$y'' + \lambda y = 0,$$
 $0 \le x \le 1,$ $y(0) + y'(0) = 0,$ $y(1) = 0$

Solution 2 In this problem we have: $p(x) = 1, q(x) = 0, r(x) = 1, a = 0, b = 1, a_1 = a_2 = b_1 = 1$ and $b_2 = 0$. The eigenvalues are $\lambda = n^2, n = 1, 2, 3, \ldots$ If $\lambda < 0$, the solution is trivial. If $\lambda = 0$, then $y = c_1 + c_2 x$, and the boundary conditions applied to this function show that an eigenfunction associated with the eigenvalue $\lambda = 0$ is 1 - x.

If $\lambda > 0$, we have as the solution of the differential equation

$$y = c_1 \cos \sqrt{\lambda} \ x + c_2 \sin \sqrt{\lambda} \ x$$

The condition y(0) + y'(0) = 0 implies that $c_1 + c_2\sqrt{\lambda} = 0$, i.e., $c_1 = -c_2\sqrt{\lambda}$. The condition y(1) = 0 implies that $\sqrt{\lambda} = \tan\sqrt{\lambda}$. Thus the eigenvalues are the squares of the solutions of the transcendental equation $z = \tan z$ which must be solved numerically.