Laplace Transform M.M. Yovanouvich

LAPLACE TRANSFORM

The Laplace transform of f(z,t) is defined as

L{f(e.t)} = /OOO ¢ fla,t)dt = F(z,s) s> 0

and its inverse is defined as
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LT{F(z,8)} = — / Flz,s)e* ds = f(z,1)
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Summary of Laplace Transforms of Partial Derivatives and Partial
Differential Equations

1) Constant
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2) Spatial Partial Derivatives
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3) Temporal Partial Derivatives



The first partial derivative of « with respect to the temporal (time) variable
t can be transformed by application of the above definition.
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Integrating by parts with
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The second partial derivative of v with respect to time ¢ can be transformed as

well.
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Finally we have,
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Application to Diffusion Equation VZu = T
a
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PDE — = —— >0 t>0
0x2 a0t v = -
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IC w(z,0) =0
BCs u(0,t) = ug, constant

(e — oo,t) = 0

Laplace Transformed Equation, IC and BCs

Ou 1 0u O%u 1 Ou
‘15@‘5@}'—5{£%—55&%}—0

0
= % — é[su— w(z,0)] =0
Therefore,
Pu s 1
i, w(z,0)
Since the initial condition requires u(z,0) = 0, therefore,
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Laplace Transform of Boundary Conditions
_ Uo
£Lu(0,)} =50, 5) = £ {u} = 22
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and

LA{u(z — 00,t)} =u(z — 00,5) = L{0} =0

Solution in Transform Domain, s

U = 016\/8/_0”6 + 026_\/8/_0”6
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Because
u(z,s) = 0 as x — oo, therefore C; =0.

Thus,
u(xz,s) = 026_\/3/_0”6

Applying the second boundary condition gives w(0,s) = Cy = to
s

The solution in the transform domain is
e~V s/ax
u(z,s) = ug————
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To find u(z,t) we must take the inverse Laplace transform of the above solution,
ie., L7 {u(z,s)}.
Therefore,
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From Laplace Transform Tables we obtain
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In this problem we have a =
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Summary of Laplace Transform Solution of Diffusion Equation,
BCs and IC

s-Domain t-Domain
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Laplace Transform of Heat Diffusion In a Finite Domain 0<z<a
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Laplace Transform of PDE, IC and BCs
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Solution in the Transform s-Domain

We may use hyperbolic functions because the physical domain is finite, i.e.,
0 < z < a. Therefore the transformed solution is

w = Cicoshy/s/a x4+ Cysinh/s/a z

The first derivative of w(x, s) with respect to the spatial parameter z is:

;l_z = Cl\/s/ia sinh\/s/iocw—l-cz\/s/ia COSh\/%w

Applying the boundary condition at z = 0 gives:
a(0,s) = - = )
s

and the boundary condition at x = a gives:

j_ﬂ(%s) =0= Cl\/s/ia sinh\/s/ia a+ 02\/3/704 cosh\/s/iaa

T

‘ sinh y/s/a a
From the last equation we have Cy = —C;—————
cosh y/s/a a

Therefore,
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s

cosh y/s/a a

Thus the solution in the transformed s—domain is

cosh y/s/a (a — :13)]

scosh/s/aa

The solution in the physical domain (z,t) is obtained by the inverse Laplace
transform:

ule,t) = £7 {7, 8)} = woL {h oJole ) }

scosh/s/aa
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By means of Laplace Transform Tables (see Spiegel Page 171  #32.153) we have
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Therefore the solution of the one-dimensional diffusion equation in a finite do-
main is

s T2at
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Expanding the cosine function in the previous expression leads to the another
equivalent form of the solution:

2
> (2n — 1)z T . 7
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w(x,t) 4

with 7 = at/a? and ¢ = z/a, the dimensionless time and dimensionless position
respectively.
Expanding the first three terms of the summation gives:
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-—(.1) B
e 4 = 0.781344
2
T
1 —91(.1)
When 7 = 0.1 we find that 56 = 0.036179
2
T
-25—(.1
%6 4( ) = 0.000419

For 3 decimal place accuracy we may use 2 terms because the higher order terms

become negligible rapidly. More terms are required for short times, i.e., 7 < 0.1.

Short Time Solution, 7 < 0.1

S
A short time solution can be obtained by setting m = ,/— and y=a—2x
«

Now, u(y,t) = ugl™! {

Examine

Therefore,
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cosh(ma) — ema 4 e=ma 1+ e~2ma
{e—m(y—a) T e—m(y-l—a)} = (_1)k6—2kma
k=0
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n=0

where n = 2k + 1.

From Laplace Transform Tables we have
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Therefore,
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The short time solution is
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At y/a = 0 the short time solution becomes
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This series converges very quickly for small values of 7.



