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LAPLACE TRANSFORM

The Laplace transform of f(x; t) is de�ned as

Lff(x; t)g =
Z 1

0
e�st f(x; t)dt = F (x; s) s > 0

and its inverse is de�ned as

L�1 fF (x; s)g = 1

2�i

Z c+i1

c�i1
F (x; s)est ds = f(x; t)

Summary of Laplace Transforms of Partial Derivatives and Partial

Di�erential Equations

1) Constant

Lfcg =
Z 1

0
e�st c dt = c

Z 1

0
e�st dt =

c

s
s > 0

L�1
�
c

s

�
= cL�1

�
1

s

�
= c

2) Spatial Partial Derivatives

L
(
@u

@x

)
=
Z 1

0
e�st

@u

@x
dt =

d

dx

Z 1

0
e�st udt

by Leibnitz's Rule
Therefore

L
(
@u

@x

)
=

d

dx
Lfug � du

dx
(x; s)

Similarly,

L
(
@2u

@x2

)
=
Z 1

0
e�st

@2u

@x2
dt =

d2

dx2

Z 1

0
e�st u dt =

d2u

dx2
(x; s)

3) Temporal Partial Derivatives



The �rst partial derivative of u with respect to the temporal (time) variable
t can be transformed by application of the above de�nition.

L
(
@u

@t

)
=
Z 1

0
e�st

@u

@t
dt

Integrating by parts with

u0 = e�st dv0 = du
du0 = �se�stdt v0 = u

we obtain:

L
(
@u

@t

)
= [u0v0]10 �

Z 1

0
u
d

dt
e�st

= [ue�st]10 + s
Z 1

0
e�st u dt

= s
Z 1

0
e�st u dt� u(x; 0)

L
(
@u

@t

)
= su(x; s)� u(x; 0)

The second partial derivative of u with respect to time t can be transformed as
well.

L
(
@2u

@t2

)
=
Z 1

0
e�st

@2u

@t2
dt =

"
e�st

@u

@t

#1
0

+ s
Z 1

0
e�st

@u

@t
dt

Therefore,

L
(
@2u

@t2

)
= sL

(
@u

@t

)
� @u

@t
(x; 0)

or

L
(
@2u

@t2

)
= s [su(x; s)� u(x; 0)]� @u

@t
(x; 0)

Finally we have,

L
(
@2u

@t2

)
= s2u(x; s)� su(x; 0)� @u

@t
(x; 0)
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Application to Di�usion Equation r2u =
1

�

@u

@t

PDE
@2u

@x2
=

1

�

@u

@t
x � 0 t > 0

� > 0

IC u(x; 0) = 0

BCs u(0; t) = u0; constant

u(x!1; t)! 0

Laplace Transformed Equation, IC and BCs

L
(
@2u

@x2
� 1

�

@u

@t

)
= L

(
@2u

@x2

)
� 1

�
L
(
@u

@t

)
= 0

=
d2u

dx2
� 1

�
[su� u(x; 0)] = 0

Therefore,
d2u

dx2
� s

�
u =

1

�
u(x; 0)

Since the initial condition requires u(x; 0) = 0; therefore,

d2u

dx2
� s

�
u = 0 s > 0

Laplace Transform of Boundary Conditions

Lfu(0; t)g = u(0; s) = Lfu0g = u0
s

and
Lfu(x!1; t)g = u(x!1; s) = Lf0g = 0

Solution in Transform Domain, s

u = C1e
p

s=� x + C2e
�
p

s=� x
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Because
u(x; s)! 0 as x!1; therefore C1 = 0 :

Thus,

u(x; s) = C2e
�
p

s=� x

Applying the second boundary condition gives u(0; s) = C2 =
u0
s

:

The solution in the transform domain is

u(x; s) = u0
e�
p

s=� x

s

To �nd u(x; t) we must take the inverse Laplace transform of the above solution,
i.e., L�1 fu(x; s)g.
Therefore,

u(x; t) = u0L�1
8<
:e�

p
s=� x

s

9=
;

From Laplace Transform Tables we obtain

L�1
(
e�a

p
s

s

)
= erfc

 
a

2
p
t

!

In this problem we have a =
xp
�

Therefore,

u(x; t) = u0erfc(
x

2
p
�t

)

= u0

"
1 � erf(

x

2
p
�t

)

#

= u0

"
1 � 2p

�

Z x=2
p
�t

0
e��

2

d�

#
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Summary of Laplace Transform Solution of Di�usion Equation,

BCs and IC

s-Domain t-Domain

d2u

dx2
� s

�
u = 0

@2u

@x2
=

1

�

@u

@t

u(x; s) = u0
1

s
e
�
q
s=� x

u(x; t) = u0 erfc

 
x

2
p
�t

!

At x = 0,

u(0; s) =
u0
s

u(0; t) = u0

As x!1;

u(1; s) = 0 u(1; t) = 0

Laplace Transform of Heat Di�usion In a Finite Domain 0 � x � a

PDE
@2u

@x2
=

1

�

@u

@t
0 < x < a; t > 0

IC t = 0; 0 � x � a; u(x; 0) = 0

BCs t > 0; u(0; t) = u0; Constant

@u

@x
(a; t) = 0

Laplace Transform of PDE, IC and BCs

PDE �! ODE

d2u

dx2
=

1

�
[su(x; s)� u(x; 0)] but u(x; 0) = 0

Therefore
d2u

dx2
=

s

�
u 0 � x � a

BCs
du

dx
(a; s) = 0 u(0; s) =

u0
s
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Solution in the Transform s-Domain

We may use hyperbolic functions because the physical domain is �nite, i.e.,
0 � x � a. Therefore the transformed solution is

u = C1 cosh
q
s=� x+ C2 sinh

q
s=� x

The �rst derivative of u(x; s) with respect to the spatial parameter x is:

du

dx
= C1

q
s=� sinh

q
s=� x+ C2

q
s=� cosh

q
s=� x

Applying the boundary condition at x = 0 gives:

u(0; s) =
u0
s

= C1

and the boundary condition at x = a gives:

du

dx
(a; s) = 0 = C1

q
s=� sinh

q
s=� a+ C2

q
s=� cosh

q
s=� a

From the last equation we have C2 = �C1

sinh
q
s=� a

cosh
q
s=� a

Therefore,

u(x; s) = C1

2
4coshqs=� x� sinh

q
s=� a

cosh
q
s=� a

sinh
q
s=� x

3
5 or

u(x; s) =
u0
s

2
4cosh

q
s=� a cosh

q
s=� x� sinh

q
s=� a sinh

q
s=� x

cosh
q
s=� a

3
5

Thus the solution in the transformed s�domain is

u(x; s) = u0

2
4cosh

q
s=� (a� x)

s cosh
q
s=� a

3
5

The solution in the physical domain (x; t) is obtained by the inverse Laplace
transform:

u(x; t) = L�1 fu(x; s)g = u0L�1
8<
:
cosh

q
s=�(a� x)

s cosh
q
s=� a

9=
;
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By means of Laplace Transform Tables (see Spiegel Page 171 #32.153) we have

L�1
(

cosh x
p
s

s cosh a
p
s

)
= 1 +

4

�

1X
n=1

(�1)n
(2n � 1)

e
�(2n� 1)2

�2t

4a2 cos(2n � 1)
�

2

x

a

Therefore the solution of the one-dimensional di�usion equation in a �nite do-
main is

u(x; t)

u0
= 1 +

4

�

1X
n=1

(�1)n
(2n � 1)

e
�(2n� 1)2

�

4

2�t

a2 cos(2n � 1)
�

2

(a� x)

a

Expanding the cosine function in the previous expression leads to the another
equivalent form of the solution:

u(x; t)

u0
= 1 � 4

�

1X
n=1

1

(2n � 1)
e
�(2n� 1)

�

4

2
�
sin(2n� 1)

�

2
�

with � = �t=a2 and � = x=a, the dimensionless time and dimensionless position
respectively.
Expanding the �rst three terms of the summation gives:

u(�; t)

u0
= 1� 4

�

2
664e�

�2

4
�
cos

�

2
(1� �) � 1

3
e
�
9�2

4
�
cos

3�

2
(1� �)

+
1

5
e
�
25�2

4
�
cos

5�

2
(1 � �) � : : :

3
775

Check convergence of solution at � =
x

a
= 1.

u(1; � )

u0
= 1 � 4

�

�
e�

�

4

2� � 1

3
e�9

�

4

2� +
1

5
e�25

�

4

2� � : : :
�
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When � = 0:1 we �nd that

e
�
�2

4
(:1)

= 0:781344

1

3
e
�9

�2

4
(:1)

= 0:036179

1

5
e
�25

�2

4
(:1)

= 0:000419

For 3 decimal place accuracy we may use 2 terms because the higher order terms
become negligible rapidly. More terms are required for short times, i.e., � < 0:1:

Short Time Solution, � � 0:1

A short time solution can be obtained by setting m =
r
s

�
and y = a�x

Now, u(y; t) = u0L�1
(

coshmy

s coshma

)

Examine
cosh(my)

cosh(ma)
=

emy + e�my

ema + e�ma
=

e�ma(emy + e�my)

1 + e�2ma

Therefore,

cosh(my)

cosh(ma)
=

h
e�m(y�a) + e�m(y+a)

i 1X
k=0

(�1)ke�2kma

=
1X
n=0

(�1)n fexp[�m(na� y)] + exp[�m(na+ y)]g

where n = 2k + 1.

From Laplace Transform Tables we have

L
(
erfc(

a

2
p
t
)

)
=

1

s
e�a

p
s
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Therefore,

L�1
(

coshmy

s coshma

)
=

1X
k=0

(�1)k
(
erfc[

(2k + 1)a� y

2
p
�t

]

+ erfc[
(2k + 1)a+ y

2
p
�t

]

)

The short time solution is

u(y; t)

u0
= 1 �

1X
k=0

(�1)k
(
erfc

"
(2k + 1)a� y

2
p
�t

#

+ erfc

"
(2k + 1)a+ y

2
p
�t

#)

Let
�t

a2
= � and

y

a
= 1� x

a
= 1 � � ; therefore

u(y=a; � )

u0
= 1 �

(
erfc

1� y=a

2
p
�

+ erfc
1 + y=a

2
p
�

)

+

(
erfc

3� y=a

2
p
�

+ erfc
3 + y=a

2
p
�

)

�
(
erfc

5� y=a

2
p
�

+ erfc
5 + y=a

2
p
�

)

At y=a = 0 the short time solution becomes

u(0; � )

u0
= 1� 2

(
erfc

1

2
p
�
� erfc

3

2
p
�
+ erfc

5

2
p
�
� : : :

)

This series converges very quickly for small values of � .
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