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Many physical problems in engineering and science are solved by the use of
Fourier series. The Fourier series of a periodic function f(x) with period 2L
is de�ned as the trigonometric series
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where the Fourier coe�cients A0; An; Bn are given by
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The kth term of the Fourier cosine and sine series are
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The kth partial sum of the Fourier series is
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Othogonality of Cosine and Sine Functions
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The family of sine functions
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The following properties of cosine and sine functions when n = 0; 1; 2; 3 : : :
can be used to simplify the Fourier coe�cients:

sin(n�) = 0 and sin(�n�) = 0 (9)

and
cos(n�) = (�1)n and cos(�n�) = 0 n 6= 0 (10)

Even and Odd Functions

The Fourier series expansion can be obtained with less e�ort if we take
advantage of the even or odd property of the function. An even function requires
that

f(�x) = f(x) (11)

which means that the graph of the function is symmetric with respect to the
vertical axis. For an odd function,

f(�x) = �f(x) (12)

The cosine function is an even function, whereas the sine function is an odd
function.

If f(x) is an even function,
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If f(x) is an odd function,
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The product of even and odd functions is and odd function, whereas the prod-
ucts of two even functions or two odd functions produce even functions.
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An even function f(x) has the Fourier expansion
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For an odd function f(x), the Fourier series has the form
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Fourier Coe�cients of Several Functions

Sawtooth Wave

The �rst example is the periodic sawtooth wave de�ned as

f(x) = x; �L < x < L

with the periodic condition

f(x+ 2L) = f(x)

This function, as de�ned, is an odd function.

The Fourier coe�cients are found to be
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and therefore the sawtooth function can be represented by the Fourier series
expansion:
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Each term of the expansion (called harmonic) has a larger frequency than the
previous term, and all frequencies are multiples of a fundamental frequency that
has the same period as the function f(x). The absolute value of the amplitude
of each term is smaller than the previous term.
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