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ME 303 M.M. Yovanovich

Week 5

Lecture 1

e Sturm-Liouville Problem (SLP) Cartesian Coordinates.
o u=u(z,y)oru=mu(z,t).

e Partial differential equations.

2D Laplace Equation: Upy T Uy =0, 0<z <L, O<y<H

1
1D Diffusion Equation: Upe = —Ug, >0, O0<az<L
@
) 1
1D Wave Equation: Ugy = U, > 0, O<e<l
¢

where a and ¢? are positive constants.

e Separation of Variables Method (SVM) is used to obtain two sets of inde-
pendent ODES. Let u(z,y) = X(2)Y (y) and let w(z,t) = X(2)T'(t). One very

important ODE appears in all three cases.

X"+ MX =0, 0<z<lL

e Homogenous BCs at # = 0 and # = L are
i) X(0)=0 or ) X'(0)=0 or ) —kX'(0)=hX(0)

where h and k are positive thermophysical parameters. These are homogeneous
BCs of the first kind (Dirichlet), of the second kind (Neumann), and of the third
kind (Robin).

Similarly

D) X(L)=0 or @) X'(L)=0 or i) —kX'(L)=hX(L)

o There are nine combinations of these homogeneous BCs.



e Solution of ODE.
X(z) = Cqcos Az + Cysin Az, O<z<lL
and its derivative is

X'(z) = —Ci Asin Az + C3 Acos Az

¢ Eigenfunctions are
cos Az and sin Az

e Three combinations of the homogeneous BCs.
(a) X'(0)=0 and X(L)=0
(b) X'(0)=0 and X'(L)=0
(a) X'(0)=0 and —kX'(L)=hX(L)
e Case (a)
X'(0) = =CyAsin(A x 0) + C2Acos(A x 0) =0

requires that

Cz)\:()

Therefore C; = 0 or A = 0. Since A = 0 gives a trivial solution, it will be
rejected, and we take Cy = 0.

e Solution is

X(z) = Cq cos(Az) and X'(z) = —CiAsin(Az)

o Apply second homogeneous Dirichlet condition to get
Cicos(AL) =0

Either C; = 0 which gives a trivial solution, and therefore this option is rejected,

or cos(A L) = 0. This is satisfied when

)\nL:(2n—1)%, n=123,...

¢ Eigenvalues are
7
b

A, = (2n—1)2L

n=123,...
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e Many math texts call A\2 the eigenvalues. Most engineering texts call A, the
eigenvalues.

o Eigenfunctions which satisfy the ODE and the two homogeneous Dirichlet
conditions at # = 0 and ¢ = L are

T

X,(z) = D, cos <(2n — 1)2L

>, n=123....

where D,, are arbitrary constants.

e Case (b)
X'(0) and X'(L)=0

The first homogeneous Neumann condition requires Cy = 0 and X (z) = C; cos(Az)
and X'(z) = —CiAsin(Az) as in Case (a). The homogeneous Neumann condi-
tion at ¢ = L requires that

X'(L) = —CiAsin(AL) =0
Both options C; = 0 and A = 0 give trivial solutions, therefore they are rejected.

e Eigenfunctions for Case (b) are
sin(A, L)=0, n=123,...

which require
MmL=nm, n=1273,...

e Eigenvalues for Case (b) are

A= —, n=1,23,...

o Eigenfunctions which satisfy the ODE and the two homogeneous Neumann
conditions at # = 0 and ¢ = L are

nmwr

X,(z) = D, cos <T>, n=123. ...

where D,, are arbitrary constants.

e Case (c)
X'(0) and —kX'(L)=hX(L)
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The first homogeneous Neumann condition requires Cy = 0 and X (z) = C; cos(Az)
and X'(z) = —C1Asin(Az) as in Case (a) and Case(b). The homogeneous Robin

condition at # = L requires that
—kX'(L) = hX(L) or —k[-CiAsin(AL)] = hCcos(AL)

The option C; = 0 gives a trivial solution, therefore it is rejected. Cancel the
common C; and rewrite the relation as

h
T cos(AL) = Asin(AL)

The relation is dimensional because both A and h/k have the same units [m™!].
The argument of the cosine and sine functions is AL which must be dimension-
less.

e Characteristic Equation
Multiple through by L and define dimensionless parameters:

e

0 =\L and Bi—k>0

Now the characteristic equation becomes:
dsind = Bi cosd and 0< Bt < o

This is a transcendental equation. Numerical methods are required to obtain its
roots d for a given value of the parameter Bi. The Newton-Raphson iterative
method can be used to obtain the roots. For a given value of Bi the infinite set
of roots called eigenvalues are:

51<52<53<"'<5n<5n+1<5n-|—2<"'<

Lecture 2
e Makeup Lecture Number 2.

e Discuss Project Number 1. Physical interpretation of equations and the solu-
tion.

e Some Problems from Spiegel’s Text:

p- 584,

A Excercises: 3



B Excercises: 2, 3
kKRR KRR K

p- 592,

A Excercises: 1, 3
ok ok kR Rk R Rk

P. 593,

B Excercises: 2, 3

ok KRR KRR

p- 615,

A Excercises: 1, 2, 3,4, 5
kKRR KRR K KRR K K
p. 616-617,

B Excercises: 1, 2,6, 7
KRR KRR KRR KRR
p- 617,

C Excercises: 8
ok R KKK R KKK R K

e Limiting values of parameter Bq.

e For Bi = 0, the characteristic equation becomes d sin § = 0. Since d cannot be
set to zero (it gives a trivial solution), we set sin & = 0. The roots (eigenvalues)
are

op=mnmw, n=123,...
e For Bi = oo write the equation as

cosd = —sin é
7

and now set Bi = oo to give cos § = 0. The roots (eigenvalues) are

5n:(2n—1)%, n=123,...

e Location of Roots (Eigenvalues).

Location of the roots are easily found graphically. They lie in the intervals:

0 < Bi< 00

0 < 6 < 7/2

7 < 6 < 37 /2

27 < i3 < 57 /2
n—1r < &, < (2n—1)x/2



e Maple, Mathcad and Matlab can find these roots quickly and accurately.
o Difference between two consecutive eigenvalues.
Opsi1 — 0p = @ as n — 00
e Eigenfunctions which satisfy the ODE and the homogeneous Neumann and
Robin conditions at x = 0 and = = L respectively are

O

X,.(z) = D, cos (T), n=123....

where D,, are arbitrary constants.

e Approximation of the First Eigenvalue, 4;.

As Bi — 0, 01 — vV Bi

and .
As Bi — o, 51 — 5
These limits are used to develop the following approximation proposed by M.M.
Yovanovich:
2
0 = ull and m=2.15

()T

This correlation equation is valid of all values of Bi, i.e., 0 < Bi < oo, and
it provides acceptable accuracy for the calculation of §; for most engineering
applications.

o Newton-Raphson Iterative Method.

The the nth root 6, of the arbtrary function f(d) is obtained by means of the
relation:
et — g _ T g g
n n f’((snk)) ’ 3 4y 9y
where (k) represents the kth iteration.
For the characteristic equation, ¢ sin  — Bicos d = 0, we have the relation:

51(1’“) sin 51(1’“) — Bicos 51(1’“)
51(1k) cos 51(1k) + (1 + Bi)sin 51(1k)

51(1k+1) — §k) _

k3

. k=1,2.3...
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The first guess of the first root 551) this characteristic equation can be based on
the approximation given above. Generally three to four iterations will provide
very accurate values for the first root. The first guess for the second root should
be based on

5531) = 01 (converged value) + 7

This process can be followed to calculate all required roots which may be as
many as several hundred for a particular problem. Maple and Mathcad can
calculate these roots very quickly and accurately. See ME 303 Web site: Maple
WS called CECART.MWS.

Lecture 4
o See Spiegel’s Text: Sections 2.1 and 2.2 on pages 585-591.

e Separation of Variables Method (SVM) applied to 1D wave equation.

1
Upy = —Uge, t >0, O<e <L

2
and the system constant is ¢* = T'/p where T is the tension in the elastic string
and p is the linear density of the string. The units of ¢? [m?/s?] and c¢[m/s].
See the development of PDE in the text.

e Boundary and Initial Conditions.
The ends are fixed, therefore the homogeneous boundary conditions of the first

kind (Dirichlet) are:
t>0, u(0,t) = 0, w(L,t) =0

The two initial conditions are based on the initial displacement and the initial
velocity:

t=0, 0<z<L, w(z,0) = f(z), = g(z)

o Separated ODES.
Let w(xz,t) = X(x)T(t); substitute into the PDE to get the separated relation-
ship:

X// 1 T//

X T
The identity must hold for all time ¢ > 0 and any value of @ in interval [0, L].
There are three options: lhs = rhs = (i) 0, (i1) — A%, (52) A%




e Option (i) gives the separated ODEs:
X// — 0 T// — 0
and their solutions are:
X(il?) == 01213 + 02, and T(t) == C3t + 04

Both solutions are linear in time and space.

e Option (ii) gives the separated ODEs:
X'+ XX and T4 INT=0
and their solutions are :
X(z) = Cq cos(Az) + Cs sin(Ax) and  T'(t) = Cscos(Act) 4+ Cysin(Act)

Both solutions are periodic functions of space and time respectively.

o Option (iii) gives the separated ODEs:
X'— XX, and T'—NT=0
and their solutions are :
X(z) = C) cosh(Az)+Cysinh(Ax)  and  T(t) = Cscosh(Act)+Cysinh(Aet)

Both solutions are non-periodic functions of space and time respectively.
The solutions for option (iii) can also be written in terms of exponentials:

X(z) = Cyexp(Az)+Crexp(—Az) and T(t) = Csexp(Act)+Cyexp(—Act)

e The fixed end conditions require:
w(0,t) = X(0)T(t) =0= X(0) =0 and wu(L,t)=X(L)T(t)=0= X(L)=0

These homogeneous BCs require C; = 0 and Cy = 0 in options (i) and (iii).
These solutions are not applicable to the fixed ends string.
These conditions when applied to option (ii) solution require:

Ci=0 and Cosin(AL) =0



Since C3 = 0 leads to a trivial solution, it i1s rejected. The other option is
sin(AL) = 0 which leads to the eigenvalues:

n=123,...

Continuing with the solution. Put CyCs = E and CyCy = F.
e General Solution of PDE.

Use Superposition Principle to write the general solution as:

> t t
u(z,t) = Z [Encos <n7£c > + F, sin <n7£c >] sin <n7lrl_w> , t>0, O<ae<l
n=1

Note that #/L and ct/L are dimensionless position and time.

o Fourier Coefficients
The Fourier coefficients E,, and F,, are determined by the initial displacement
and velocity. The velocity for ¢ > 0 and 0 <z < L 1s:

= p 5 () () + £ () o ()]0 ()

n=1

Application of the initial conditions gives the first Fourier sine series:
> E,sin <$> = f(=), 0<z<L
n=1

Application of the initial conditions gives the second Fourier sine series:

£ (5 nn () o 0crs

n=1

Application of the orthogonality property of sines we find the Fourier coefficients

E, = %/OL f(z)sin <n7lrl_w> dz

nmwe 2 rL . [/nTx
("F) Fa=g [ storsin () e

o [llustrative Example: Plucked String at Midpoint. See page 589 of Spiegel’s
Text.

from the integrals:

and




e Initial displacement of string. u(z,0) = f(z) where

2hx L 2h(L — x
f(w):T for 0<2< <% and f(;p):%

Lo | b
IN
8
IN
b.

for

e Initial velocity of displaced string. wu;(z,0) = g(x) where
g(z) =0

Since g(x) = 0 all Fourier coeflicients F,, =0,n =1,2,3,....
The Fourier coefficients E,, are obtained from

E, =7 / ) sin @dw

Therefore,

——sin —d:B + — sin dr

/L/2 2he . nmx 2 (L 2h(L—=2) . nwz
En I L Jr L L

After some integrations we get the Fourier coeffcients for the initial displacement
of the string:
8h .
E, = sin % for n=13>5,... and E,=0 for n=24.6,...

n2y? 2

e Motion of the string. Solution of the undamped wave equation.

(i t) = 8h o sin(nm/2) ain T o nwct

72 n? L L

n=1
The first few terms of the solution are

u(w,t)_ 8 1. 7wz wet 1 . 3nz 3wct 1 . 5wz Sret
h w2 L L 32 L L 52 L L

Observe the dimensionless displacement is ¢ = u(x,t)/h, the dimensionless po-
sition is ¢ = #/L and the dimensionless time is 7 = ¢t/ L appear in the formal
solution.
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