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ME 303 M.M. Yovanovich

Week 5

Lecture 1

� Sturm-Liouville Problem (SLP) Cartesian Coordinates.

� u = u(x; y) or u = u(x; t).

� Partial di�erential equations.

2D Laplace Equation: uxx + uyy = 0; 0 < x < L; 0 < y < H

1D Di�usion Equation: uxx =
1

�
ut; t > 0; 0 < x < L

1D Wave Equation: uxx =
1

c2
utt; t > 0; 0 < x < L

where � and c2 are positive constants.

� Separation of Variables Method (SVM) is used to obtain two sets of inde-
pendent ODES. Let u(x; y) = X(x)Y (y) and let u(x; t) = X(x)T (t). One very
important ODE appears in all three cases.

X 00 + �2X = 0; 0 < x < L

� Homogenous BCs at x = 0 and x = L are

i) X(0) = 0 or ii) X 0(0) = 0 or iii) � kX 0(0) = hX(0)

where h and k are positive thermophysical parameters. These are homogeneous
BCs of the �rst kind (Dirichlet), of the second kind (Neumann), and of the third
kind (Robin).
Similarly

i) X(L) = 0 or ii) X 0(L) = 0 or iii) � kX 0(L) = hX(L)

� There are nine combinations of these homogeneous BCs.



� Solution of ODE.

X(x) = C1 cos�x+ C2 sin �x; 0 < x < L

and its derivative is

X 0(x) = �C1 � sin �x+ C2 � cos �x

� Eigenfunctions are
cos�x and sin �x

� Three combinations of the homogeneous BCs.

(a) X 0(0) = 0 and X(L) = 0

(b) X 0(0) = 0 and X 0(L) = 0

(a) X 0(0) = 0 and � kX 0(L) = hX(L)

� Case (a)
X 0(0) = �C1� sin(�� 0) + C2� cos(� � 0) = 0

requires that
C2 � = 0

Therefore C2 = 0 or � = 0. Since � = 0 gives a trivial solution, it will be
rejected, and we take C2 = 0.

� Solution is

X(x) = C1 cos(�x) and X 0(x) = �C1� sin(�x)

� Apply second homogeneous Dirichlet condition to get

C1 cos(�L) = 0

Either C1 = 0 which gives a trivial solution, and therefore this option is rejected,
or cos(�L) = 0. This is satis�ed when

�nL = (2n � 1)
�

2
; n = 1; 2; 3; : : :

� Eigenvalues are
�n = (2n� 1)

�

2L
; n = 1; 2; 3; : : :
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� Many math texts call �2n the eigenvalues. Most engineering texts call �n the
eigenvalues.

� Eigenfunctions which satisfy the ODE and the two homogeneous Dirichlet
conditions at x = 0 and x = L are

Xn(x) = Dn cos
�
(2n � 1)

�x

2L

�
; n = 1; 2; 3: : : :

where Dn are arbitrary constants.

� Case (b)
X 0(0) and X 0(L) = 0

The �rst homogeneous Neumann condition requiresC2 = 0 andX(x) = C1 cos(�x)
and X 0(x) = �C1� sin(�x) as in Case (a). The homogeneous Neumann condi-
tion at x = L requires that

X 0(L) = �C1� sin(�L) = 0

Both options C1 = 0 and � = 0 give trivial solutions, therefore they are rejected.

� Eigenfunctions for Case (b) are

sin(�n L) = 0; n = 1; 2; 3; : : :

which require
�nL = n�; n = 1; 2; 3; : : :

� Eigenvalues for Case (b) are

�n =
n�

L
; n = 1; 2; 3; : : :

� Eigenfunctions which satisfy the ODE and the two homogeneous Neumann
conditions at x = 0 and x = L are

Xn(x) = Dn cos
�
n�x

L

�
; n = 1; 2; 3: : : :

where Dn are arbitrary constants.

� Case (c)
X 0(0) and � k X 0(L) = hX(L)
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The �rst homogeneous Neumann condition requiresC2 = 0 andX(x) = C1 cos(�x)
and X 0(x) = �C1� sin(�x) as in Case (a) and Case(b). The homogeneous Robin
condition at x = L requires that

�kX 0(L) = hX(L) or � k [�C1� sin(�L)] = hC1 cos(�L)

The option C1 = 0 gives a trivial solution, therefore it is rejected. Cancel the
common C1 and rewrite the relation as

h

k
cos(�L) = � sin(�L)

The relation is dimensional because both � and h=k have the same units [m�1].
The argument of the cosine and sine functions is �L which must be dimension-
less.

� Characteristic Equation
Multiple through by L and de�ne dimensionless parameters:

� = �L and Bi =
hL

k
> 0

Now the characteristic equation becomes:

� sin � = Bi cos � and 0 < Bi <1

This is a transcendental equation. Numerical methods are required to obtain its
roots � for a given value of the parameter Bi. The Newton-Raphson iterative
method can be used to obtain the roots. For a given value of Bi the in�nite set
of roots called eigenvalues are:

�1 < �2 < �3 < � � � < �n < �n+1 < �n+2 < � � � <

Lecture 2

� Makeup Lecture Number 2.

� Discuss Project Number 1. Physical interpretation of equations and the solu-
tion.

� Some Problems from Spiegel's Text:

p. 584,
A Excercises: 3
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B Excercises: 2, 3
********************
p. 592,
A Excercises: 1, 3
********************
P. 593,
B Excercises: 2, 3
****************
p. 615,
A Excercises: 1, 2, 3, 4, 5
***********************
p. 616-617,
B Excercises: 1, 2, 6, 7
**********************
p. 617,
C Excercises: 8
**************

� Limiting values of parameter Bi.

� For Bi = 0, the characteristic equation becomes � sin � = 0. Since � cannot be
set to zero (it gives a trivial solution), we set sin � = 0. The roots (eigenvalues)
are

�n = n�; n = 1; 2; 3; : : :

� For Bi =1 write the equation as

cos � =
�

Bi
sin �

and now set Bi =1 to give cos � = 0. The roots (eigenvalues) are

�n = (2n � 1)
�

2
; n = 1; 2; 3; : : :

� Location of Roots (Eigenvalues).

Location of the roots are easily found graphically. They lie in the intervals:

0 < Bi < 1
0 < �1 < �=2
� < �2 < 3�=2
2� < �3 < 5�=2

(n� 1)� < �n < (2n � 1)�=2
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� Maple, Mathcad and Matlab can �nd these roots quickly and accurately.

� Di�erence between two consecutive eigenvalues.

�n+1 � �n ! � as n!1

� Eigenfunctions which satisfy the ODE and the homogeneous Neumann and
Robin conditions at x = 0 and x = L respectively are

Xn(x) = Dn cos

 
�nx

L

!
; n = 1; 2; 3: : : :

where Dn are arbitrary constants.

� Approximation of the First Eigenvalue, �1.

As Bi! 0; �1 !
p
Bi

and
As Bi!1; �1 !

�

2
These limits are used to develop the following approximation proposed by M.M.
Yovanovich:

�1 =
�=2"

1 +

 
�=2p
Bi

!m#1=m and m = 2:15

This correlation equation is valid of all values of Bi, i.e., 0 < Bi < 1, and
it provides acceptable accuracy for the calculation of �1 for most engineering
applications.

� Newton-Raphson Iterative Method.

The the nth root �n of the arbtrary function f(�) is obtained by means of the
relation:

�(k+1)n = �(k)n � f(�(k)n )

f 0(�(k)n )
; k = 1; 2; 3; : : :

where (k) represents the kth iteration.
For the characteristic equation, � sin � �Bi cos � = 0, we have the relation:

�(k+1)n = �(k)n � �(k)n sin �(k)n �Bi cos �(k)n

�
(k)
n cos �

(k)
n + (1 +Bi) sin �

(k)
n

; k = 1; 2; 3 : : :
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The �rst guess of the �rst root �
(1)
1 this characteristic equation can be based on

the approximation given above. Generally three to four iterations will provide
very accurate values for the �rst root. The �rst guess for the second root should
be based on

�
(1)
2 = �1(converged value) + �

This process can be followed to calculate all required roots which may be as
many as several hundred for a particular problem. Maple and Mathcad can
calculate these roots very quickly and accurately. See ME 303 Web site: Maple
WS called CECART.MWS.

Lecture 4

� See Spiegel's Text: Sections 2.1 and 2.2 on pages 585-591.

� Separation of Variables Method (SVM) applied to 1D wave equation.

uxx =
1

c2
utt; t > 0; 0 < x < L

and the system constant is c2 = T=� where T is the tension in the elastic string
and � is the linear density of the string. The units of c2 [m2=s2] and c [m=s].
See the development of PDE in the text.

� Boundary and Initial Conditions.
The ends are �xed, therefore the homogeneous boundary conditions of the �rst
kind (Dirichlet) are:

t > 0; u(0; t) = 0; u(L; t) = 0

The two initial conditions are based on the initial displacement and the initial
velocity:

t = 0; 0 � x � L; u(x; 0) = f(x);
@u(x; 0)

@t
= g(x)

� Separated ODES.
Let u(x; t) = X(x)T (t); substitute into the PDE to get the separated relation-
ship:

X 00

X
=

1

c2
T 00

T

The identity must hold for all time t > 0 and any value of x in interval [0; L].
There are three options: lhs = rhs = (i) 0; (ii) � �2; (iii) �2.

7



� Option (i) gives the separated ODEs:

X 00 = 0; T 00 = 0

and their solutions are:

X(x) = C1x+ C2; and T (t) = C3t+ C4

Both solutions are linear in time and space.

� Option (ii) gives the separated ODEs:

X 00 + �2X and T 00 + c2�2T = 0

and their solutions are :

X(x) = C1 cos(�x) + C2 sin(�x) and T (t) = C3 cos(�ct) + C4 sin(�ct)

Both solutions are periodic functions of space and time respectively.

� Option (iii) gives the separated ODEs:

X 00 � �2X; and T 00� c2�2T = 0

and their solutions are :

X(x) = C1 cosh(�x)+C2 sinh(�x) and T (t) = C3 cosh(�ct)+C4 sinh(�ct)

Both solutions are non-periodic functions of space and time respectively.
The solutions for option (iii) can also be written in terms of exponentials:

X(x) = C1 exp(�x)+C2 exp(��x) and T (t) = C3 exp(�ct)+C4 exp(��ct)

� The �xed end conditions require:

u(0; t) = X(0)T (t) = 0 =) X(0) = 0 and u(L; t) = X(L)T (t) = 0 =) X(L) = 0

These homogeneous BCs require C1 = 0 and C2 = 0 in options (i) and (iii).
These solutions are not applicable to the �xed ends string.
These conditions when applied to option (ii) solution require:

C1 = 0 and C2 sin(�L) = 0
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Since C2 = 0 leads to a trivial solution, it is rejected. The other option is
sin(�L) = 0 which leads to the eigenvalues:

�n =
n�

L
; n = 1; 2; 3; : : :

Continuing with the solution. Put C2C3 = E and C2C4 = F .

� General Solution of PDE.
Use Superposition Principle to write the general solution as:

u(x; t) =
1X
n=1

�
En cos

�
n�ct

L

�
+ Fn sin

�
n�ct

L

��
sin

�
n�x

L

�
; t > 0; 0 < x < L

Note that x=L and ct=L are dimensionless position and time.

� Fourier Coe�cients
The Fourier coe�cients En and Fn are determined by the initial displacement
and velocity. The velocity for t > 0 and 0 � x � L is:

@u(x; t)

@t
=

1X
n=1

�
En

��n�c
L

�
sin

�
n�ct

L

�
+ Fn

�
n�c

L

�
cos

�
n�ct

L

��
sin

�
n�x

L

�

Application of the initial conditions gives the �rst Fourier sine series:

1X
n=1

En sin
�
n�x

L

�
= f(x); 0 � x � L

Application of the initial conditions gives the second Fourier sine series:

1X
n=1

�
n�c

L

�
Fn sin

�
n�x

L

�
= g(x); 0 � x � L

Application of the orthogonality property of sines we �nd the Fourier coe�cients
from the integrals:

En =
2

L

Z L

0
f(x) sin

�
n�x

L

�
dx

and �
n�c

L

�
Fn =

2

L

Z L

0
g(x) sin

�
n�x

L

�
dx

� Illustrative Example: Plucked String at Midpoint. See page 589 of Spiegel's
Text.
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� Initial displacement of string. u(x; 0) = f(x) where

f(x) =
2hx

L
for 0 � x � L

2
; and f(x) =

2h(L � x)

L
for

L

2
� x � L

� Initial velocity of displaced string. ut(x; 0) = g(x) where

g(x) = 0

Since g(x) = 0 all Fourier coe�cients Fn = 0; n = 1; 2; 3; : : :.
The Fourier coe�cients En are obtained from

En =
2

L

Z L

0
f(x) sin

n�x

L
dx

Therefore,

En =
2

L

Z L=2

0

2hx

L
sin

n�x

L
dx +

2

L

Z L

L=2

2h(L� x)

L
sin

n�x

L
dx

After some integrations we get the Fourier coe�cients for the initial displacement
of the string:

En =
8h

n2�2
sin

n�

2
for n = 1; 3; 5; : : : and En = 0 for n = 2; 4; 6; : : :

� Motion of the string. Solution of the undamped wave equation.

u(x; t) =
8h

�2

1X
n=1

sin(n�=2)

n2
sin

n�x

L
cos

n�ct

L

The �rst few terms of the solution are

u(x; t)

h
=

8

�2

�
sin

�x

L
cos

�c t

L
� 1

32
sin

3�x

L
cos

3�c t

L
+

1

52
sin

5�x

L
cos

5�c t

L
� � � �

�

Observe the dimensionless displacement is � = u(x; t)=h, the dimensionless po-
sition is � = x=L and the dimensionless time is � = c t=L appear in the formal
solution.
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