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ME 303 M.M. Yovanovich

Week 3

Lecture 1

e Vibrating String and Membranes (Rectangular and Circular). The 1-D wave
equation for the string in cartesian coordinates is

1
Upy = —Uge, t >0, O<ae<

2

It can be modified to include vibrations of rectangular membranes where the
displacement from equilibrium is w(z,y,t) and circular membranes where for
axisymmetric vibrations w(r,t).

o Rectangular Membrane
The 2-D wave equation for rectangular membranes is

1

Ugy + Uy = U, >0, —L<ez<L, W<y<W
C

where ¢? = T'/p and now p is the mass density per unit area of the membrane.

o Circular Membrane
The 1-D axisymmetric wave equation for a circular membrane of radius a is

1 1

UTT+_ur:_2utt, t>07 O<r<a
T C

where ¢? = T'/p and now p is the mass density per unit area of the membrane.

e Laplace Equation in Cartesian Coordinates
Derivation of continuity equation (conservation of mass) for two-dimensional,
steady flow of an incompressible fluid. The procedure is presented below.

e Select a differential control volume (CV): dV = dzdyl of unit length into the
paper.

e Velocity components are u(z,y) and v(z,y) along the z— and y—coordinates
respectively.



e Mass flow rates into the CV are m, = pudA, and m, = pvdA, where dA, =
ldy and dA, = 1dzx.

o Mass flow rate out of the CV through the opposite faces located at = 4 dx
and y + dy are (taking the first two terms of the Taylor series expansions of m,,
and 1)

O, . om

5 dr and My, + a—yydy

e Conservation of mass principle for steady flow requires that the mass flow rate
into the CV must equal the mass flow rate out of the CV. Thus

My +

L Oy . O,

dy

Cancelling terms and substituting for the mass flow rates and the flow areas
I(pu) | 9(pv)
dxdyl =0
l Oz * Oy v

Dividing by the differential volume gives the 2-D partial differential equation for
steady flow in the absence of mass sources. It is called the continuity equation:

9(pu) , 9(pv)
Oz + Jy

gives

=0

The above equation is applicable for variable mass density, i.e. p(z,y). It can
be expanded and written in the following form:

Ou  Ov Jp op

o Vector Form of Continuity Equation
pV-‘?—I- (V-V)p:()

where the velocity vector is V =iu+ fv. Consult your fluids text for details.

e Incompressible Fluid
If p = constant, then the continuity equation becomes

- Ou Ov
V-V—a—w—l-a—y—o



e Velocity Potential.
Here we introduce the velocity potential ¢(z,y) such that the velocity compo-
nents are given by the relations:

U = % and %

Oz v Jy
Consult your fluids text for details.

e Laplace Equation
Substitution into the continuity equation gives the 2-D Laplace equation in
cartesian coordinates:

o? o?

Vip=V. V¢——¢+—¢—O
dy*

which describes the 2-D steady flow of an 1nc0mpresmble fluid. If the velocity
vector is three-dimensional, i.e. V= zu(:n Y,z )—I—]v(w y,z) + kw(:z; y,z), then
the continuity equation can be expressed as

- au Jv  Ow

V-V = e 6_y + s =0
and Ty
2, _ _
Ve = 0w2+0y2+622 =0

e The Laplace equation also appears in many other physical problems such
as electricity and magnetism, steady heat conduction and steady mass trans-
fer, gravitational potential, etc. Functions which satisfy (are solutions of) the
Laplace equation are called harmonic functions.

See Problem Set 1 for examples of two- and three-dimensional harmonics which
satisfy the two- and three-dimensional forms of the Laplace equation.

Lecture 2

e Derivation of Heat Equation Diffusion Equation (Heat Equation) with Dis-
tributed Heat Sources.

o Select a three-dimensional control volume in cartesian coordinates: dV =
dedydz.

e Use Fourier’s Law of Conduction:

> 2 - T 0T 0T
g=—-kVT or i1q,+j3q,+kqg.=—k 7,6__|_ g _|_ka_
Ox Ay 0z



The heat flux components are

oT oT oT
qm__k%7 Qy—_ka_yv qz—_ka

and the temperature is time dependent, i.e. T = T(z,y,z,t). The thermal
conductivity k depends on the temperature, i.e. k = k(7). The three heat flow
rates into the CV along the three coordinate directions are:

oT oT oT
Q. =q.dA, = —k%dydz, Q, = q,dA, = —ka—ydwdz, Q. =q.dA, = —kadwdy
The three heat flow rates out of the CV through the opposite faces located at
x + de,y + dy, z + dz are respectively

Qz + 6Qﬂ” de = Q. — aa (ka—T) dzdydz
:13

0
Q, + de =Qy— 6 ( 6T) dedydz
dy

dy
0 oT
Q. —|— =Q, — 2, (ka—) dedydz

The net heat flow rate into the CV 1s equal to the difference between the heat
flow rates into and out of the CV. Therefore the net heat flow rate into the CV
through the six faces of the CV is given by

0 oT 0 oT 0 oT
— | k— k— k— || dedyd
l@w( 6w)+6y( ay)+az( 7z )] ez
If distributed volumetric heat sources are present, i.e. P > 0, then there is heat

generation in the CV, and
Qeen = Pdxdydz

During transient heating, there is internal energy storage in the CV. Thus
oT
Qstorage = pcpﬁdxdydz
where p is the mass density and ¢, is the specific heat capacity of the material.

e Conservation of Energy Principle.
Conservation of energy principle can be stated as

Net Conduction Rate into CV+Heat Generation Rate in CV = Energy Storage in CV

4



This leads to the three-dimensional form of the transient Diffusion Equation
with distributed volumetric heat sources and temperature dependent thermal
conductivity:

0 oT 0 oT 0 oT oT

— | k— — | k— — | k— =pe——, t>0

G ( 6:13) +5y( ay)+az( az) TP =gy
after dividing by the common differental volume dV = dzdydz. There are
three conduction terms, one source term and one storage term in the general
Diffusion Equation. If the thermal conductivity is constant, i.e. k = constant,

we can factor k, and then divide through by k to get the alternative form of the
Diffusion Equation:

T 0T 9T P _10T
0z Oy 022 k  adt’

t>0

where the thermophysical parameter is o = k/(pec,) > 0.
o Vector Form of Transient Diffusion Equation With Distributed Heat Sources.

P 10T
My =t
VT - =—— >0

o Vector Form of Transient Diffusion Equation Without Distributed Heat Sources.

107

2
7=~
v a Ot

t>0

o Vector Form of Steady Diffusion Equation With Distributed Heat Sources.

P
2T: _
v k

This PDE is called Poisson’s equation and T'(z,y, z). It is an elliptic type.

e Vector Form of Steady Diffusion Equation Without Distributed Heat Sources.
VT =0
This PDE is called Laplace’s equation and T'(z,y, z). It is an elliptic type.

e Solution of these equations will be obtained.




Lecture 3

e Nondimensionalization of the one-dimensional diffusion equation 7T, = iTt
defined on the finite interval: 0 < « < L. The initial condition T'(z,0) = T;
and the two boundary conditions: T'(0,t) = Ty, T(L,t) = T; < Ty are non-
homogeneous. The dependent variable (temperature) depends on six inde-
pendent parameters: T = T(z,L,t,a,T;,To). The dimensionless position:
¢ = z/L, dimensionless time: 7 = at/L?, and the dimensionless temperature:
¢ = (T(x,t) — T;)/(To — T;) lead to the dimensionless form of the PDE, BCs
and IC.
gbggng,-, T >0, 0<éxl

and
P(€0) =0,  $0,7)=1,  ¢(1,7)=0

The PDE is homogeneous, the IC is homogeneous, and one of the two BCs i1s
nonhomogeneous. The dimensionless temperature depends on two independent
dimensionless parameters: ¢(§, 7). See the ME 303 Web site for details of the
method.

e Fourier Cosine and Sine Series.

o See the summary in Spiegel’s Handbook of Mathematics, pages 131-135, and
Spiegel’s text, pages 382-383, and the examples on pages 383-395. See the
material and the Maple worksheets on the ME 303 Web site.

e Fourier cosine and sine series are very important in the solutions of the
one-dimensional wave and diffusion equations and the two-dimensional Laplace
equation formulated in cartesian coordinates.




