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ME 303 M.M. Yovanovich

Week 3

Lecture 1

� Vibrating String and Membranes (Rectangular and Circular). The 1-D wave
equation for the string in cartesian coordinates is

uxx =
1

c2
utt; t > 0; 0 < x < L

It can be modi�ed to include vibrations of rectangular membranes where the
displacement from equilibrium is u(x; y; t) and circular membranes where for
axisymmetric vibrations u(r; t).

� Rectangular Membrane
The 2-D wave equation for rectangular membranes is

uxx + uyy =
1

c2
utt; t > 0; �L < x < L; �W < y < W

where c2 = T=� and now � is the mass density per unit area of the membrane.

� Circular Membrane
The 1-D axisymmetric wave equation for a circular membrane of radius a is

urr +
1

r
ur =

1

c2
utt; t > 0; 0 < r < a

where c2 = T=� and now � is the mass density per unit area of the membrane.

� Laplace Equation in Cartesian Coordinates
Derivation of continuity equation (conservation of mass) for two-dimensional,
steady 
ow of an incompressible 
uid. The procedure is presented below.

� Select a di�erential control volume (CV): dV = dxdy1 of unit length into the
paper.
� Velocity components are u(x; y) and v(x; y) along the x� and y�coordinates
respectively.



� Mass 
ow rates into the CV are _mx = �udAx and _my = �vdAy where dAx =
1dy and dAy = 1dx.
� Mass 
ow rate out of the CV through the opposite faces located at x + dx
and y+ dy are (taking the �rst two terms of the Taylor series expansions of _mx

and _my):

_mx +
@ _mx

@x
dx and _my +

@ _my

@y
dy

� Conservation of mass principle for steady 
ow requires that the mass 
ow rate
into the CV must equal the mass 
ow rate out of the CV. Thus

_mx + _my = _mx +
@ _mx

@x
dx+ _my +

@ _my

@y
dy

Cancelling terms and substituting for the mass 
ow rates and the 
ow areas
gives "

@(�u)

@x
+
@(�v)

@y

#
dxdy1 = 0

Dividing by the di�erential volume gives the 2-D partial di�erential equation for
steady 
ow in the absence of mass sources. It is called the continuity equation:

@(�u)

@x
+
@(�v)

@y
= 0

The above equation is applicable for variable mass density, i.e. �(x; y). It can
be expanded and written in the following form:

�

"
@u

@x
+
@v

@y

#
+ u

@�

@x
+ v

@�

@y
= 0

� Vector Form of Continuity Equation

�r � ~V +
�
~V � r

�
� = 0

where the velocity vector is ~V =~iu+~jv. Consult your 
uids text for details.

� Incompressible Fluid
If � = constant, then the continuity equation becomes

r � ~V =
@u

@x
+
@v

@y
= 0
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� Velocity Potential.
Here we introduce the velocity potential �(x; y) such that the velocity compo-
nents are given by the relations:

u =
@�

@x
and v =

@�

@y

Consult your 
uids text for details.

� Laplace Equation
Substitution into the continuity equation gives the 2-D Laplace equation in
cartesian coordinates:

r2� = r � r� =
@2�

@x2
+
@2�

@y2
= 0

which describes the 2-D steady 
ow of an incompressible 
uid. If the velocity
vector is three-dimensional, i.e. ~V =~iu(x; y; z) +~jv(x; y; z) + ~kw(x; y; z), then
the continuity equation can be expressed as

r � ~V =
@u

@x
+
@v

@y
+
@w

@z
= 0

and

r2� =
@2�

@x2
+
@2�

@y2
+
@2�

@z2
= 0

� The Laplace equation also appears in many other physical problems such
as electricity and magnetism, steady heat conduction and steady mass trans-
fer, gravitational potential, etc. Functions which satisfy (are solutions of) the
Laplace equation are called harmonic functions.

See Problem Set 1 for examples of two- and three-dimensional harmonics which
satisfy the two- and three-dimensional forms of the Laplace equation.

Lecture 2

� Derivation of Heat Equation Di�usion Equation (Heat Equation) with Dis-
tributed Heat Sources.

� Select a three-dimensional control volume in cartesian coordinates: dV =
dxdydz.
� Use Fourier's Law of Conduction:

~q = �krT or ~i qx +~j qy + ~k qz = �k

"
~i
@T

@x
+~j

@T

@y
+ ~k

@T

@z

#
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The heat 
ux components are

qx = �k
@T

@x
; qy = �k

@T

@y
; qz = �k

@T

@z

and the temperature is time dependent, i.e. T = T (x; y; z; t). The thermal
conductivity k depends on the temperature, i.e. k = k(T ). The three heat 
ow
rates into the CV along the three coordinate directions are:

Qx = qx dAx = �k
@T

@x
dydz; Qy = qy dAy = �k

@T

@y
dxdz; Qz = qz dAz = �k

@T

@z
dxdy

The three heat 
ow rates out of the CV through the opposite faces located at
x+ dx; y + dy; z + dz are respectively

Qx +
@Qx

@x
dx = Qx �

@

@x

 
k
@T

@x

!
dxdydz

Qy +
@Qy

@y
dy = Qy �

@

@y

 
k
@T

@y

!
dxdydz

Qz +
@Qz

@z
dz = Qz �

@

@z

 
k
@T

@z

!
dxdydz

The net heat 
ow rate into the CV is equal to the di�erence between the heat

ow rates into and out of the CV. Therefore the net heat 
ow rate into the CV
through the six faces of the CV is given by"

@

@x

 
k
@T

@x

!
+

@

@y

 
k
@T

@y

!
+

@

@z

 
k
@T

@z

!#
dxdydz

If distributed volumetric heat sources are present, i.e. P > 0, then there is heat
generation in the CV, and

Qgen = Pdxdydz

During transient heating, there is internal energy storage in the CV. Thus

Qstorage = �cp
@T

@t
dxdydz

where � is the mass density and cp is the speci�c heat capacity of the material.

� Conservation of Energy Principle.
Conservation of energy principle can be stated as

Net Conduction Rate into CV+Heat Generation Rate in CV = Energy Storage in CV
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This leads to the three-dimensional form of the transient Di�usion Equation
with distributed volumetric heat sources and temperature dependent thermal
conductivity:

@

@x

 
k
@T

@x

!
+

@

@y

 
k
@T

@y

!
+

@

@z

 
k
@T

@z

!
+ P = �cp

@T

@t
; t > 0

after dividing by the common di�erental volume dV = dxdydz. There are
three conduction terms, one source term and one storage term in the general
Di�usion Equation. If the thermal conductivity is constant, i.e. k = constant,
we can factor k, and then divide through by k to get the alternative form of the
Di�usion Equation:

@2T

@x2
+
@2T

@y2
+
@2T

@z2
+
P

k
=

1

�

@T

@t
; t > 0

where the thermophysical parameter is � = k=(�cp) > 0.

� Vector Form of Transient Di�usion Equation With Distributed Heat Sources.

r2T +
P

k
=

1

�

@T

@t
; t > 0

�Vector Form of Transient Di�usion Equation Without Distributed Heat Sources.

r2T =
1

�

@T

@t
; t > 0

� Vector Form of Steady Di�usion Equation With Distributed Heat Sources.

r2T = �
P

k

This PDE is called Poisson's equation and T (x; y; z). It is an elliptic type.

� Vector Form of Steady Di�usion Equation Without Distributed Heat Sources.

r2T = 0

This PDE is called Laplace's equation and T (x; y; z). It is an elliptic type.

� Solution of these equations will be obtained.
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Lecture 3

� Nondimensionalization of the one-dimensional di�usion equation Txx = 1

�
Tt

de�ned on the �nite interval: 0 � x � L. The initial condition T (x; 0) = Ti

and the two boundary conditions: T (0; t) = T0; T (L; t) = Ti < T0 are non-
homogeneous. The dependent variable (temperature) depends on six inde-
pendent parameters: T = T (x;L; t; �; Ti; T0). The dimensionless position:
� = x=L, dimensionless time: � = �t=L2, and the dimensionless temperature:
� = (T (x; t) � Ti)=(T0 � Ti) lead to the dimensionless form of the PDE, BCs
and IC.

��� = �� ; � > 0; 0 < � < 1

and
�(�; 0) = 0; �(0; � ) = 1; �(1; � ) = 0

The PDE is homogeneous, the IC is homogeneous, and one of the two BCs is
nonhomogeneous. The dimensionless temperature depends on two independent
dimensionless parameters: �(�; � ). See the ME 303 Web site for details of the
method.

� Fourier Cosine and Sine Series.

� See the summary in Spiegel's Handbook of Mathematics, pages 131-135, and
Spiegel's text, pages 382-383, and the examples on pages 383-395. See the
material and the Maple worksheets on the ME 303 Web site.

� Fourier cosine and sine series are very important in the solutions of the
one-dimensional wave and di�usion equations and the two-dimensional Laplace
equation formulated in cartesian coordinates.
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