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ME 303 M.M. Yovanovich

Week 2

Lecture 1
e Hand out Problem Set 1.

e ODEs in cartesian, polar and spherical coordinates; TAs will discuss some
solutions in the tutorials. Discuss how to obtain solution of homogeneous ODE
in spherical coordinates. Use Maple to obtain the solution.

e Boundary Conditions (BCs). There are three types:

(1) BC of the First Kind or Dirichlet BC. u is specified at points on the bound-
ary.

(ii) BC of the Second Kind or Neumann BC. du/0n, gradient of w normal to
boundary is specifed at points on the boundary.

(iii) BC of the Third Kind or Robin BC. Linear combination of Dirichlet and

w
Neumann BCs is specified at points on the boundary: ae + bu = 0; where the
n

parameters: a, b are positive physical parameters.

Lecture 2
e Makeup Lecture 1.

¢ Error and complementary error functions. See Spiegel Handbook, 35.1 — 35.6,
Page 183.
e Definitions
fo) = = ["edp wmd erfe(w) = —= [ e dp
erw—ﬁoe an ercw—ﬁme
where ( is a dummy variable.

e Relations and Properties.
erf(z) 4 erfe(z) =1

erf(0) =0, erfe(0)=1



erf(o0) =1, erfe(oo) =0

erf(—z) = erf(z)
derf(z) 2 e d erfe(x) 2 2

= —=¢ and ————~ = ———¢7"

dz VT dx NS
Demonstrate that the function: w = Cerf(n) where C is an arbitrary constant

satisfies the ODE:

d>u Lo du _0
dn? ndn N

This is an important second-order ODE.

e How to generate PDEs. See Chapter 12, first section. We will not spend much

time on this topic. Demonstrate that given w(z,y) = yf(x) where f(z) is an

arbitrary function of «, elimination of f(z) gives the first-order PDE: v = ya—u.
)

e Also demonstrate that u(z,y) = f(z +y) + g(x — y) satisfies the PDE: u,, =
Uy, where f(z+y) and g(z —y) are arbitrary functions. Here are two examples:

u(z,y) = sin(x +y) + e

and
w(z,y) = (z +y)* + tan(z — y)

e Separation of Variables Method (SVM). See Problem 7 of Problem Set 1.

There are several examples given.

e Scparate the 2-D Laplace equation in cartesian coordinates: g, + ty, = 0
into three sets of independent ODEs. Let u(z,y) = X (2)Y (y) where X(z) and
Y (y) are independent functions and substitute into the PDE.

ou  O(XY) O(X) oY) _
dr Oz  Ox Y+x Oz = XY
because 9Y/0x = 0.
O*u  9(X'Y) O(X') )
ozz Oz Oz Yx Ox =4y
Similarly we find
0*u "
o =



The given PDE becomes
X"Y + XY" =0

Next we divide through by the assumed solution XY which gives separated
relation:

X// Y// 0

X Ty~

The numerator and denominator of the first term depends on x only. Also the
numerator and denominator of the second term depends on y only. Demonstrate
that both terms are constants by taking the derive with respect to  and then
with respect to y. The two terms must be constants. There are three options
for the constants:

i 0, 0
i) =A% +A?
ii) =A%, 4N

where the parameter A > 0 is the separation constant. Each of these options
will give two independent ODEs. They are respectively

i) X"=0 and Y"=0,
i) X"+ XNX =0 and Y" -\ =0,
ig) X" — MNX =0 and Y"+ MY =0,

These are second-order ODEs with constant coeflicients.

Lecture 3

e 1-D Diffusion Equation. w(z,t).

Y

1
Upy = —Usg, t >0, O<ae<
(87

where a > 0 is a thermophysical paramter. Let w(z,t) = X (2)T'(¢). Substitute
into the PDE to get

X// 1 T/
X aT
The LHS and RHS must be equal to the same constant. There are three options:
@) 0, 0
i) =A% =)\
it) A%, A’

3



The three options lead to the three sets of independent separated ODEs:
i) X" =0 and T =0
it) X" + X =0 and T + X2aT =0
iii) X' — N X =0 and T — XaT =0

The three sets of solutions are
i) X(z) = Ciz + C, and T(t)=0Cs

it) X(z) = C1cos Ax + Cysin Az and T(t) = Cye Vot
it1) X(z) = Cycosh Az + Cssinh Az and T(t) = 036)‘20”5

The first solution is independent of time. The second solution has a negative
exponential in time which goes to zero for very large times, and the third solution
has a positive exponential in time which becomes unbounded at very large times.
The second solution is

w(z,t) = X(2)T(t) = Cye™ Yot [Cy cos Az + Cy sin Az]

Discuss heating and cooling problems which are identical when the temperature
difference 6(t) is introduced. For both problems the temperature difference 6(t)
is initially 6(0) = 6, > 0, and 6(t) — 0 as ¢t — oco. The form of the solution
must be of the form

(9 t) _ e—constant t t > 0

b; ’

The constant will be found later.

e Use SVM on the 1-D Wave Equation where u(z,t) to find the three sets of
separated ODEs. The 1-D wave equation is

1

um:c—2utt, t>07 O<ae<

where ¢ > 0. The time equations will be second-order in time.

Lecture 4

o Classification of Linear Second-Order Partial Differential Equations. The
two-dimensional PDE where u(xz,y) has the general form:

Aty + Bugy + Cuyy + Duy + Euy+ Fu=G




where the coefficients A, B,C, D, E, F, and G are functions of  and y or they
can be constants. The PDEs can be classified as:

1. Hyperbolic if B? —4AC >0
2. Parabolic if B* —4AC =0
3. Elliptic if B? —4AC <0

o The PDEs are defined to be homogeneous it G = 0, otherwise they are defined
to be nonhomogeneous.

e The PDEs are defined to be nonlinear if they contain terms like

Ou 10u?

Yor ~ 2 0x
e Examples of Hyperbolic, Parabolic and Elliptic types.

e Diffusion equation: g, = ;.

Here we have # = #,f = y. Comparing given equation with general equation
shows that: A=1,B=0,C =0,D =0,FE = —-1,F = 0,G = 0. Therefore
B? —4BC = (0)®> — (4) x (0) x (0) = 0. For all values of = and ¢ the diffusion

equation is parabolic type.

o Wave equation: ., = uy.
Here we have # = #,f = y. Comparing given equation with general equation
shows that: A=1,B=0,C = -1,D =0,FE =0,F = 0,G = 0. Therefore
B? —4BC = (0)2—(4) x (1) x (—1) =4 > 0. For all values of z and ¢ the wave
equation is hyperbolic type.

e Laplace equation: g, + uy, = 0.

Here we have ¢ = z,y = y. Comparing given equation with general equation
shows that: A =1,B =0,C =1,D = 0,E = 0,F = 0,G = 0. Therefore
B? —4BC = (0)> — (4) x (1) x (1) = —4 < 0. For all values of z and ¢ the
Laplace equation is elliptic type.

o Wave Equation Appears in Several Physical Problems such as:

e 1. Vibrating Strings and Membranes (rectangular, circular)
e 2. Transverse Vibrations of Beams
¢ 3. Longitudinal Vibrations of Elastic Bars



e 4. Torsional Vibrations of Elastic Rods

e 5. Sound Waves in Tubes or Pipes

o 6. Transmission of Electricity Along an Insulated, Low-Resistance Cable
o 7. Long Water Waves in a Straight Canal

o 8. Linearized Supersonic Air Flow

¢ 9. Many other examples from physics and engineering

e Vibrating String With Several Forces.

o String length is L. One end 1s fixed at © = 0 and the other end is fixed
at @ = L. The tension in the string i1s 7" and its linear mass density is p.
The displacement of the string from its equilibrium position is y(z,t). The
displacements occur in the zy—plane, and the displacements are small, i.e.
ly(z,t)| << L. The local slope of the string is also small, therefore dy/dx << 1.

e Forces acting on the element of arclength ds.

d 2
ds = 1+(—y) de =~ dz
dr

e Tension Forces
At z, the vertical component of the tension force

T sin&%TtanezT@
Oz

acts in the negative y—direction.
At z + dz, the vertical component of the tension force is using the Taylor series

T@‘FQ(T@)C{:B

approximation:

Jxr Oz Oz

acts in the positive y—direction. The net vertical component of the tension

d dy
— T = )d
dz ( dw) v

acting in the positive y—direction.

force is

e Body Force due to gravity is pgdez acting in the negative y—direction.

o Friction damping force in negative y—direction is related to the string velocity;

it is &y %dw.



o Retarding force in negative y—direction is related to the string displacement
from equilibrium; it is keydzx.

e External Periodic Force is F' cos(wt)d.

e Newton’s Law of Motion applied to the string element gives:

Z Forcesy divection = (mass) x (acceleration)

Therefore
0 Jy Jy 9%y
7 (T a_w) dz + F cos(wt)de — ki adw — koydx — pgde = pwdw

Dividing through by the mass of the element pdz and assuming that the tension
1s constant, we obtain the general wave equation for a string:

F
c—y—l——cos(wt)—————y—g:— t >0, O<ae<L

where ¢ = T'/p and ¢ = /T /p is the wave propagation velocity.

e Free Vibrations of a String.
Here we set F = 0,k; = 0,ky = 0 and ignore the gravitational force. The
general wave equation becomes

02%:%, t >0, 0<z<L
o &y 1 0%

Erchai iR t>0, 0<z<lL
or

ymzc%ytt t >0, O<ae<

This linear homogeneous PDE will be solved for a number of initial conditions.
At t = 0, the initial displacement from equilibrium is y(z,0) = f(z), and the ini-
dy(=,0)

5 g(x) where both f(z) and g(z) are arbitrary functions.

tial velocity is




