Week 12

Lecture 1

• Solution of ODE

$$\frac{d\theta}{dt} + m \theta = n, \quad t > 0, \quad \text{IC} \quad \theta(0) = \theta_i$$

where $\theta(t) = T(t) - T_{\infty}$, and the constants are:

$$m = \frac{hA}{\rho c_p V}$$
 and $n = \frac{q_i A}{\rho c_p V}$

where A= surface area, V= volume, $q_i=$ incident heat flux. Units are: $h\left[W/(m^2\cdot K)\right],\ q_i\left[W/m^2\right],\ m\left[1/s\right],\ {\rm and}\ n\left[K/s\right]$

• Solution of Problem (SVM). Separate the variables and integrate.

$$\frac{d\theta}{\theta - \frac{n}{m}} = -m \, dt$$

Write as

$$\frac{d\left(\theta - \frac{n}{m}\right)}{\theta - \frac{n}{m}} = -m dt$$

Integrate to get

$$\ln\left(\theta(t) - \frac{n}{m}\right) = -m t + \ln C_1$$

Apply IC to find the constant of integration:

$$C_1 = \ln\left(\theta_i - \frac{n}{m}\right)$$

Substitute to get the solution

$$\theta(t) = \frac{n}{m} + \left(\theta_i - \frac{n}{m}\right)e^{-mt}, \quad t > 0$$

The steady-state solution occurs when $t = \infty$:

$$\theta(\infty) = \frac{n}{m}$$

• Laplace Transform Method

$$\mathcal{L}\left\{rac{d heta}{dt}
ight\} + \mathcal{L}\left\{m\, heta(t)
ight\} = \mathcal{L}\left\{n
ight\}$$

which can be written as

$$s\bar{ heta}(s) - heta(0) + m\,ar{ heta}(s) = rac{n}{s}$$

Substitute the IC and solve for $\bar{\theta}(s)$.

$$ar{ heta}(s) = rac{n}{s(s+m)} + rac{ heta_i}{s+m}$$

The solution is obtained by taking the inverse Laplace transform:

$$heta(t) = \mathcal{L}^{-1}\left\{ar{ heta}(s)
ight\} = \mathcal{L}^{-1}\left\{rac{n}{s(s+m)}
ight\} + \mathcal{L}^{-1}\left\{rac{ heta_i}{s+m}
ight\}$$

To obtain the inverse Laplace transform of the first term on the right hand side, we must use partial fractions. Write

$$\frac{n}{s(s+m)} = n\left(\frac{A}{s} + \frac{B}{s+m}\right) = n\left(\frac{A(s+m) + Bs}{s(s+m)}\right)$$

Now equate

$$s(A+B) = 0$$
 and $Am = 1$

Therefore the constants are

$$A = \frac{1}{m}$$
 and $B = -A = -\frac{1}{m}$

Now we can write the first term as

$$\frac{n}{s(s+m)} = \frac{n}{ms} - \frac{n}{m(s+m)}$$

Taking the inverse Laplace transform gives

$$heta(t) = \mathcal{L}^{-1} \left\{ rac{n}{ms} - rac{n}{m(s+m)} + rac{ heta_i}{s+m}
ight\}$$

and

$$\theta(t) = \left(\frac{n}{m}\right) \mathcal{L}^{-1} \left\{\frac{1}{s}\right\} + \left(\theta_i - \frac{n}{m}\right) \mathcal{L}^{-1} \left\{\frac{1}{s+m}\right\}$$

which gives for the solution

$$\theta(t) = \frac{n}{m} + \left(\theta_i - \frac{n}{m}\right)e^{-mt}, \quad t > 0$$

See the ME 303 Web site for Maple worksheets which deal with this and related problems.

The tutorial will cover the application of the Laplace transform method to a second order differential equation from dynamics.

- Laplace Transform Method Application
- System of ODEs

$$x'(t) + 2y'(t) - 2y(t) = t$$

and

$$x(t) + y'(t) - y(t) = 1$$

with ICs:

$$x(0) = 0$$
, and $y(0) = 0$

Apply Laplace transform method to ODES and substitute the ICs to get two algebraic equations:

1)
$$sX(s) + 2sY(s) - 2Y(s) = \frac{1}{s^2}$$

and

2)
$$X(s) + sY(s) - Y(s) = \frac{1}{s}$$

¿From 2) we find

$$X(s) = \frac{1}{s} - sY(s) + Y(s)$$

Substitute into 1) to get

$$s\left[\frac{1}{s} - sY(s) + Y(s) + 2sY(s) - 2Y(s)\right] = \frac{1}{s^2}$$

or

$$(s^2 - 3s + 2)Y(s) = 1 - \frac{1}{s^2}$$

Solving for Y(s):

$$Y(s) = \frac{s+1}{s^2(s-2)} = -\frac{3}{4} \cdot \frac{1}{s} - \frac{1}{2} \cdot \frac{1}{s^2} + \frac{3}{4} \cdot \frac{1}{s-2}$$

Take inverse Laplace transform to get

$$y(t) = \mathcal{L}^{-1} \{Y(s)\} = -\frac{3}{4} - \frac{t}{2} + \frac{3}{4}e^{2t}$$

Now we can solve for X(s), then take the inverse Laplace transform to obtain x(t). A simpler way is to substitute the result for y(t) into the second ODE to find

 $x(t) = \frac{3}{4} - \frac{3}{4}e^{2t} - \frac{t}{2}$

Lecture 2

- Makeup Lecture
- See ME 303 Web site for material on Laplace Transform Method applied to PDEs.
- Laplace Transform of Partial Derivatives: Space and Time Derivatives.

$$\mathcal{L}\left\{\frac{\partial u}{\partial x}\right\} = \frac{d}{dx}\mathcal{L}\left\{u\right\} \ \equiv \frac{d\overline{u}}{dx}(x,s)$$

and

$$\mathcal{L}\left\{\frac{\partial^2 u}{\partial x^2}\right\} = \int_0^\infty e^{-st} \frac{\partial^2 u}{\partial x^2} dt = \frac{d^2}{dx^2} \int_0^\infty e^{-st} u dt = \frac{d^2 \overline{u}}{dx^2} (x, s)$$

and

$$\mathcal{L}\left\{rac{\partial u}{\partial t}
ight\} = s\overline{u}(x,s) - u(x,0)$$

and

$$\mathcal{L}\left\{\frac{\partial^2 u}{\partial t^2}\right\} = s^2 \overline{u}(x,s) - su(x,0) - \frac{\partial u}{\partial t}(x,0)$$

• See material on the application of Laplace Transform Method to the solution of the 1D heat equation in a half-space x > 0 for the Dirichlet boundary condition.

Summary of Laplace Transform Solution of Diffusion Equation, BCs and IC

t-Domain

$$\frac{d^2 \overline{u}}{dx^2} - \frac{s}{\alpha} \overline{u} = 0$$
$$\overline{u}(x, s) = u_0 \frac{1}{s} e^{-\sqrt{s/\alpha}} x$$

$$egin{aligned} rac{\partial^2 u}{\partial x^2} &= rac{1}{lpha} rac{\partial u}{\partial t} \ u(x,t) &= u_0 \; erfc\left(rac{x}{2\sqrt{lpha t}}
ight) \end{aligned}$$

At
$$x = 0$$
,

$$\overline{u}(0,s) = \frac{u_0}{s}$$

$$u(0,t) = u_0$$

As
$$x \to \infty$$
.

$$\overline{u}(\infty, s) = 0$$

$$u(\infty,t)=0$$

Lecture 3

- ME 303 Web site has short Laplace Transform Table with entries not found in Schaum's Outline. They are applicable for solutions of diffusion equation in half-space with boundary conditions: i) Dirichlet, ii) Neumann, and iii) Robin.
- Laplace transform solution of diffusion equation in finite region: $0 \le x \le a$.

PDE:
$$u_{xx} = \frac{1}{\alpha} u_t, \quad t > 0, \quad 0 < x < a$$

IC:
$$t = 0, \quad 0 \le x \le a, \quad u(x, 0) = 0$$

BCs:
$$t > 0$$
, $u(0, t) = u_0$, $u_x(a, t) = 0$

Laplace transformed equations:

ODE:
$$\frac{d^2 \bar{u}}{dx^2} = \frac{1}{\alpha} \left[s \bar{u} - u(x,0) \right], \quad 0 < x < a$$

Apply IC: u(x,0) = 0 to give

ODE:
$$\frac{d^2\bar{u}}{dx^2} - \frac{s}{\alpha}\bar{u} = 0, \quad 0 < x < a$$

Transformed BCs are:

$$\bar{u}(0,s) = \frac{u_0}{s}, \qquad \frac{d\bar{u}(a,s)}{dx} = 0$$

Solutions in the s- and t-domains are:

$$ar{u}(x,s) = u_0 \left[rac{\cosh \sqrt{s/lpha} \; (a-x)}{s \cosh \sqrt{s/lpha} \; a}
ight], \quad s > 0$$

Therefore the solution of the one-dimensional diffusion equation in a finite domain is

$$\frac{u(x,t)}{u_0} = 1 + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)} e^{-(2n-1)^2 \frac{\pi^2}{4} \frac{\alpha t}{a^2}} \cos(2n-1) \frac{\pi}{2} \frac{(a-x)}{a}$$

Another equivalent form of the solution is:

$$\frac{u(x,t)}{u_0} = 1 - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)} e^{-(2n-1)\frac{\pi^2}{4}\tau} \sin(2n-1)\frac{\pi}{2}\xi$$

with $\tau = \alpha t/a^2 > 0$ and $0 \le \xi = x/a \le 1$, the dimensionless time and dimensionless position respectively.

Lecture 4

- Makeup Lecture
- ullet Problem of last lecture was reformulated. Change a to L and reverse the location of the two boundary conditions. The physics of the problem is unchanged. The new problem formulation is

$$u_{xx} = \frac{1}{\alpha} u_t, \quad t > 0, \quad 0 < x < L$$

with initial condition:

$$t = 0, \quad 0 \le x \le L, \quad u(x,0) = 0$$

and boundary conditions:

$$t > 0$$
, $x = 0$, $u_x = 0$, and $x = L$, $u = u_0$ (constant)

The Laplace transformed equation is identical to previous formulation. The Laplace transform of the BCs gives:

$$\frac{\bar{u}(0,s)}{dx} = C_2 \sqrt{\frac{s}{\alpha}} = 0$$
 which requires $C_2 = 0$

and

$$\bar{u}(L,s) = C_1 \cosh \sqrt{\frac{s}{\alpha}} L = \frac{u_0}{s}$$
 which requires $C_1 = \frac{u_0}{s \cosh \sqrt{\frac{s}{\alpha}} L}$

The solution in the s-domain is

$$ar{u}(x,s) = rac{u_0 \cosh \sqrt{rac{s}{lpha}}x}{s \cosh \sqrt{rac{s}{lpha}}L}, \quad s > 0, \quad x \geq 0$$

The solution in the t-domain is

$$u(x,t) = \mathcal{L}^{-1}\{\bar{u}(x,s)\}\$$

Using entry from Laplace transform table: No. 32.153 on page 171 of Schaum's Outline, by comparison of the terms we find:

$$a = \frac{L}{\sqrt{\alpha}}$$
 and $x = \frac{x}{\sqrt{\alpha}}$

The solution is

$$\frac{u(x,t)}{u_0} = 1 + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)} e^{-(2n-1)^2 \frac{\pi}{4}^2 \frac{\alpha t}{L^2}} \cos(2n-1) \frac{\pi}{2} \frac{x}{L}, \quad t > 0, \quad 0 \le x \le L$$

• Dimensionless variables:

$$\phi = rac{u(x,t)}{u_0} = f(\xi, au), \quad ext{where} \quad au = rac{lpha t}{L^2} \quad ext{and} \quad \xi = rac{x}{L}$$

- Discuss physics of the problem and its solution. The solution consists of the steady-state part represented by the constant 1, and the transient part respresented by the summation term.
- Show plots of the dimensionless solution $\phi(\xi,\tau)$: $0 \le \phi \le 1$ in $0 \le \xi \le 1$ for $\tau \ge 0$.

Lecture 5

- Laplace tranform method applied to 1D diffusion in half-space subjected to Robin boundary condition (RBC).
- Solution in s—domain

$$\bar{u}(x,s) = \frac{\frac{hu_f}{ks}}{\frac{h}{k} + \sqrt{\frac{s}{\alpha}}} e^{-\sqrt{\frac{s}{\alpha}}x}, \quad s > 0, \quad x \ge 0$$

To find the inverse Laplace transform, use the short table presented on the ME 303 Web site. The last entry of the table shows that the inversion of

$$f(s) = \frac{be^{-a\sqrt{s}}}{s(b+\sqrt{s})}$$

is

$$F(t) = -e^{ab}e^{b^2t} \operatorname{erfc}\left(b\sqrt{t} + \frac{a}{2\sqrt{t}}\right) + \operatorname{erfc}\left(\frac{a}{2\sqrt{t}}\right)$$

• Comparison of $e^{-a\sqrt{s}}$ and $e^{-\sqrt{s/\alpha x}}$ requires

$$a = \frac{x}{\sqrt{\alpha}}$$

Next compare the terms:

$$rac{b}{s(b+\sqrt{s})} \quad ext{and} \quad rac{rac{h}{ks}}{rac{h}{k}+\sqrt{rac{s}{lpha}}} = rac{rac{h\sqrt{lpha}}{k}}{s\left(rac{h\sqrt{lpha}}{k}+\sqrt{s}
ight)}$$

By comparison we find that

$$b = \frac{h\sqrt{\alpha}}{k}$$

Now we have the relations:

$$ab=rac{hx}{k},\quad b^2t=rac{h^2}{k^2}lpha t,\quad rac{a}{2\sqrt{t}}=rac{x}{2\sqrt{lpha t}}$$

and

$$e^{ab}e^{b^2t} = e^{ab+b^2t} = \exp\left(\frac{hx}{k} + \frac{h^2}{k^2}\alpha t\right)$$

• Solution is

$$\frac{u(x,t)}{u_f} = \operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}}\right) - \exp\left(\frac{hx}{k} + \frac{h^2}{k^2}\alpha t\right) \operatorname{erfc}\left(\frac{h}{k}\sqrt{\alpha t} + \frac{x}{2\sqrt{\alpha t}}\right), \quad t > 0, \quad x \ge 0$$

where u_f is the hot fluid temperature, h > 0 is the heat transfer coefficient, k > 0 is the thermal conductivity, and $\alpha > 0$ is the thermal diffusivity.

- Compare the solution with that given in the handout which comes from the ME 353 Heat Transfer Text. Examine the plots of the solution.
- Surface Temperature u(0,t)

$$rac{u(0,t)}{u_f} = 1 - \exp\left(rac{h^2}{k^2}lpha t
ight) \ ext{erfc} \left(rac{h}{k}\sqrt{lpha t}
ight)$$

which is a function of time.

• Surface Heat Flux $q_0(t)$ i.From Fourier's Law of Conduction

$$q_0 = -k \left. rac{\partial u(x,t)}{\partial x}
ight|_{x=0}$$

and with the help of Maple we obtain

$$q_0 = h \, u_f \, \exp \left(rac{h^2}{k^2} lpha t
ight) \, \mathit{erfc} \left(rac{h}{k} \sqrt{lpha t}
ight)$$

which is also a function of time.

- Final Exam, Spring 1995, Question 1
- Question deals with fluid flow and conduction (convective heat transfer)
- (a) Check the units of left and right hand sides of PDE
- (b) Obtain the similarity parameter η given $\alpha = k/(\rho c_p)$
- (c) Transform PDE into ODE
- (d) Obtain the solution of ODE given the boundary conditions
- This problem is similar to those covered in the course.