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ME 303 M.M. Yovanovich

Week 11

Lecture 1

e Similarity Method Continued.

e Characteristics of erf(n) and erfe(n)

e See ME 303 Web site for Maple worksheets on these special functions.
Further discussions of the solution for the 1D diffusion equation in half-space.
The dimensional solution depends on several parameters: T' = f(x,t, o, T;, Tp)
while the dimensionless solution depends on one parameter only: ¢ = f(n).
The gradient at the free surface x =0 or n =0 is
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The solution ¢ approaches zero asymptotically. At n = 2, ¢ = 0.0109 which is
nearly zero for engineering applications. A penetration depth can be defined to
be 6 = 4v/at, the distance into the half-space where ¢ has dropped to the value
0.011.

The solution presented here also appears in mass transfer and momentum trans-
fer. The transport parameter « called the thermal diffusivity in heat conduction
is v = u/p, the kinematic viscosity in fluid mechanics and D, is called the mass
diffusion coefficient in mass transfer.

The following types of problems which can be handled.

e Given (z,a,t,T;,Tp), find T'(z,t)

e Given (7}, Ty, T(z,t), x,«), find ¢

e Given (7}, Ty, T'(z,t), x,t), find «

e Given (7}, Ty, T(z,t),t, ), find x

The last three problems require the inverse solution, i.e. given ¢ find 7.

This can be accomplished easily by means of Maple. See the Maple worksheet
which deals with a mass transfer problem.

Simple approximations for the error and complementary error functions for cal-
culators.



Reference: P.R. Greene, J. Fluids Engineering, Vol. 111, 1989, pp. 224-226.

erf(z) =1 — Aexp(~B(z+C)?), >0
and
erfe(x) = Aexp(—B(x + C)?), x>0

with correlation coefficients: A = 1.5577, B = 0.7182,C = 0.7856. The accu-
racy is reported to be within 0.42%.

If y = erfc(z), the inverse complementary error function is = erfc™'(y). where
O<y<land 0<x < 0.

The inverse is approximated by

In(%)
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r=—C+| —

e See ME 303 Web site for note on polynomial approximations of error function
and its inverse.

Lecture 2

This material is not in the text. It will appear in the ME 353 course.
Solutions for 1D diffusion equation in half-space for Neumann and Robin bound-
ary conditions. The initial condition and the boundary condition as x+ — oo are
the same for both solutions.

Neumann solution.
For t > 0 at x = 0, when 00/0x = —qo/k, the solution is
kT (x,t) =T} 1 e
= —=¢ +n erjc
2ot 7 n erfe(n)
where n = 2 /(2v/at). The temperature at the surface changes with time, how-

ever, the temperature gradient at the surface is constant.
The surface temperature rise is given by

RTO.6)-T) 1
2vat
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Robin Solution.
Fort > 0at x =0, 07/0x = —h/k [Ty —T(0,t)], the solution is

T, = erfe(n) — exp <2nBi + Bi2) erfe(n + Bi)



where Bi = (h/k)y/at and h is the heat transfer coefficient, k is the thermal
conductivity of the half-space, T’ is the fluid temperature, 7; is the initial tem-
perature, and = x/(2v/at) as before. In this solution the surface temperature
and the temperature gradient at the surface change with time.

The surface temperature rise is given by

70,t) = T; . .
(TJ:—ZYZ =1—exp (Bzz) erfe (B1)

Transform Methods. There are several:

e Laplace Transform

e Fourier Sine and Cosine Transforms

e Hankel Transform (problems formulated in polar coordinates)

e Mellin Transform (problems formulated in spherical coordinates)
e Other less common transforms are available

e Laplace Transform Method will be considered in this course.

Laplace Transform Method

e See the notes on the ME 303 Website and the Maple worksheets which outline
the Laplace Transform Method with applications to ODES and PDES.

e See the Text by M.R. Spiegel, Applied Differential Equations, Chapter 6.

e See internet for many Websites which contain much information on ODEs,
Laplace Transforms and Maple.

e See M.R. Spiegel, Mathematical Handbook, Shaum’s Outline Series for defi-
nitions and Table of Laplace Transforms.

Chapter 6 of Spiegel Text.

e 1.1 Inroduction

e 1.2 Definitions and examples of Laplace Transforms; Transforms of deriva-
tives; Application to ODEs; Dirac delta impulse function;

e 1.3 Properties of Laplace Transforms

e 1.4 Gamma functions and its properties.

e 1.6 Definitions of Heaviside unit step function.

Definitions of Laplace Transform and its Inverse Transform.

The Laplace transform of f(z,t) is defined as
Lf(z)} = /°° e f(a,t)dt = F(z,s) s>0
0
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and its inverse is defined as

LY P s)) = —— / T Pl s)e ds = f(x,1)
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e Because the inverse Laplace tranform is very difficult to get from the definition
given above, we will use Tables and Computer Algebra Systems such as Maple
to get the inverse.

e Maple Package and Commands

e Read in the Maple worksheet the Laplace Transform Package:
— with(inttrans)

e Maple commands:

— laplace(f(x,t),t,s)

— invlaplace(f(x,s),s,t)

e Some Laplace Transforms
a
L{a}=—-, s>0, a=constant
s

/L{e“t}: ! s>a

)
sS—a

s>0 and ,C{Simu)t}:L s>0

S
E{COSU)t} = 32— 82 +w27

w?’

1
,C{t}:?, s>0

|
E{t”}zl s>0, n=1,2,3,...

sn—&—l ’
See Tables of Laplace Transforms for other examples.
e Laplace Transform of Derivatives
LY'(1)} = sy(s) = Y(0)
where Y'(0) is the initial value of the function, and
y(s) = LY (1)}
L{Y"(t)} = s’y(s) — sY(0) = Y'(0)



where Y (0) is the initial value of the function, and Y’(0)) is the initial value
of its derivative. Higher order derivatives can also be transformed. These are
important in the Laplace transform of ODEs.

e Properties of Laplace Transform Operator
— It is a linear operator

LA{af@)+bg()} =aL{f)} +bL{g(t)} =af(s)+by(s)
o Example
L{3—5e" +4sint — Teos3t) = L{3}+L {5} + L {4sint}+L {~T7cos 3t}
and therefore
=3L{1} = 5L {e* | + 4L {sint} — 7L {cos 3t}

and finally we get
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Lecture 3
Laplace Transform Method

e Problems from Chapter 6 of the Spiegel Text
— Page 265: A exercises: 1,7

— Page 266: B exercises: 5

— Page 283: A excercises: 1,3,5

— 284: B excercises: 3,6

— 296: A excercises: 1,2,3

e Gamma Function
e Definition

Pz +1) = /:o 37eBd 8

where (8 is a dummy variable. See Shaum’s Outline Series: pages 101-102 for
definition, plots and properties.

e Recurrence Formula

e Values of Gamma function



T(2)=T(1+1)=1T(1) =
I(3) =T(1+2)=2I"(2) =201 +1) = 2 11(1) = 2!

and so on.

In general we find

1N 1-3-5--(2m—1
F<m+§>: QT,Em ) /7 1.2.3....

The Gamma function is singular at all negative integers: (x = —1,—-2,-3,...),
and x = 0.
e For Negative Values of x.

, <0

P(z) = F(m;L 1)

r(2) 7
-1/21 _ \3) T
E{t }——81/2— o s>0

e Discuss the Laplace Transform of Heaviside unit step function and Dirac delta
function. Application to ODEs. Definitions of Heaviside unit step function:
H(t — a) or u(t — a) and Dirac delta function 6(¢t — a) also called the impulse
function.

e Maple supports these two functions; they are called Heaviside (t) and Dirac(t).

Properties of Heaviside and Dirac functions.

d
ZH() = 6(!)

and

/Oo 6(t)dt =1, and / O(t—a)dt =1

—o0

Laplace Transforms of Heaviside and Dirac functions.

e—a,s

L{H(t—a)} = = s>0




and
L{(t—a)y =€ a>0

and
L{H(t —a)f(t—a)} =e""F(s), a>0

Many discontinuous functions can be generated with the Heaviside function.
Some examples are:

ft) = H(t —a) — H(t = b)

and
ft) =€ [H(t —a) = H(t - b)]

and
f(t)=H(t—a)— H(a—1)

e Laplace Transform Method: First Order ODE.
e Example of simple first order ODE from transient conduction.

%+szq t>0, IC 6(0)=0;

where 0(t) = T(t) — Too and m = hA/(pc,V'), and A = surface area, and V =

volume of system. Units of m are [1/s].
e Solution by SVM

do
— = —mdt, integration gives Inf = —mit+InC}

0
With IC we find

0
C71 =1n6;, solution is 0= e M

e Laplace Transform Method

5{‘2—2}—m£{9}:o

This gives
s0(s) — 0(0) —ml(s) =0 with IC s0(s) —0; —ml(s) =0
where the Laplace transform of the dependent variable is defined as
L{0(t)} = 0(s)
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Solving for f(s) we find the solution in the transform domain:

0i

o) = m

The solution is obtained by taking the inverse Laplace transform:

9(75):[:_1{6’(3)}:071:_1{ ! }

s+m

From Laplace Transform Tables we get the solution:

o(t) = fe ™




