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Fins or Extended Surfaces

Fins or extended surfaces are used to increase the heat transfer rate from sur-
faces which are convectively cooled by gases (air) under natural or forced convec-
tion. The characteristics of fins: (a) they are metallic, (b) they having different
shapes, (c) the fin length is much larger than the thickness or diameter, (d)
there is perfect or imperfect contact at the base, (e) the fin tip is adiabatic or it
is cooled, (f) the temperature distribution is one-dimensional because Bi < 0.2.

Derivation of Fin Equation

The derivation of the fin equation is based on a heat balance over the boundaries
of a differential volume dV = A(x)dx where A(z) is the variable conduction
area. The heat conduction rate into the volume through the boundary located
at x according to Fourier’s Law of Conduction is:

Qu = () 212

where 0(x) = T'(z) — Ty is the local temperature excess. The heat conduction

rate out of the control volume through the boundary located at = + dx is

. . d .
Querde = Qu + d—Qm dz + higher order terms of Taylor series expansion
x

The heat loss rate from the surface of the fin by convective cooling according
to Newton’s Law of cooling is

Qloss = hP(z)8(z)dx

where h is the uniform heat transfer coefficient and P(z) is the local fin perime-
ter. For steady-state and in the absence of thermal sources or sinks, the energy
balance over the boundaries of the control volume, ie:

Qﬂ: = Qz‘-l—dm + Qloss

leads to the following energy balance:

d -
d—Qm de + h P(z)8(z)de =0
x



General Fin Equation

Assuming the thermal conductivity to be constant, and after some manipula-

tions the general fin equation is obtained:
d*0 N 1 dA(z) df(z) hP(z)
dz?  A(z) de  dex k A(z)

f(x) =0, 0<z<L

where L is the length of the fin. The above equation is second-order with
variable coeflicients. It requires two boundary conditions: (i) at the fin base

(x =0) and (ii) at the fin tip (z = L).
Boundary Conditions

At the fin base # = 0 there are two possible conditions: (a) perfect contact
where T'(0) = T which requires that 6(0) = 6, = Ty, — Ty and T, is the base
temperature, or there is imperfect contact at the base in which case we have
@ = he[Tv, — T(0)] = —k dT/dx where h. is the contact conductance. The
selection of the imperfect contact case leads to the boundary condition of the

third kind:

At the fin tip = L there are three possible conditions: (a) adiabatic (insulated)
tip where dT'/dz = df/dx = 0, (b) perfect contact with the fluid where T(L) =
Ty, therefore (L) = 0, and (c) convective cooling at the fin tip such that
Qiip = he [T'(L) — T¢] = —k dT(L)/dx where h, is the convective coefficient. The
third case will be considered here because it leads to the general fin solution.
Therefore at the fin tip we take:

dé(L) he

dr _?Q(L)

d#(0)  he

Fin Equation for Constant Cross-Sections

For constant cross-section fins: A(z) = A and P(x) = P, therefore the general
fin equation becomes:

40
—d2—m29:0, 0<e<L
x

where the fin parameter is defined as

hP
m’ = —

kA
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and its units are m~°. The hyperbolic form of the solution of the previous

second-order differential equation is chosen:
# = C; coshmz + Cy sinh mz

The temperature gradient is

df

e m Cq sinh mz + m C, cosh mz
x

Dimensionless Fin Parameters

We introduce the following three dimensionless fin parameters which account
for heat transfer through the base, the fin tip and the fin sides:

. h.L . heL _ /P - _ hi.
BZC: L BZe—T, mlL = HL7 Bi = A < 0.2

where t. is some effective thickness of the fin cross-section. The effective thick-
ness of a rectangular cross-section: 2¢ by w where w is the width and w >> 2t
1s t, = t. This relation is consistent with the definition:

; A cross — sectional area
e — 5 — N
P perimeter

For a circular fin of diameter d, t, = A/P = (x/4d*)/(nxd) = d/4; for a fin of
square cross-section where A = 4w? t, = A/P = (4w?)/(8w) = w/2.

Constants of Integration

After some algebraic manipulations the constants of integration for the two
boundary conditions of the third kind give:

Cy =0, [1 + n;[:b] (K]
and .
Cy = ~by ¢ [1 + ";Lﬂ K]

The fin function ¢ is defined as

= mLtanhm[L 4+ Bi.
~ mL + Bi.tanhmL



Fin Heat Transfer Rate

The relation for the heat transfer rate through the fin can be obtained by the
application of Fourier’s Law of Conduction at the fin base:

d6(0)

i, = —kA
Qs b

= —kAmCy [W)

Fin Resistance

The fin resistance is defined as:

T, —T mL ¢ ~1
Ren = ﬁ = [1 + 5 ] [VhPEA ]

The general solution and corresponding relations can be used for any constant

cross-section fin which has contact resistance and end cooling. The special cases
which are frequently presented in heat transfer texts arise from the previous
general solution and results.

Special Cases of the General Solution
Perfect Contact at the Fin Base and End Cooling
For this case we put h. > 10 or Bi. > 10°. This leads to #(0) = 6, or T'(0) = T}

The fin resistance becomes:

1
Rin = ——
i hPRA ¢

where the fin function ¢ = ¢(mL, Bi,). When Bi, = 0, ¢ = tanhmL, and
when Bi, = oo, ¢ = cothmL. Also when mL > 2.65, the numerical values of
tanh m L and cothmL are within 1% of 1, and therefore ¢ & 1 for all values of
Bi..

Perfect Contact at Fin Base and Adiabatic Fin Tip

For this case we put Bi. = 10° and Bi, = 0. The fin function becomes: ¢ =
tanh m L and the fin resistance relation becomes:
1
Rﬁn =
VhPEA tanh mL




Infinitely Long Fin With Perfect Contact at Fin Base
For this case we put Bi, = 10° and take mL > 2.65, and the fin resistance

reduces to

1

Rep = ———
b hPRA

Criterion for Infinitely Long Fins

The criterion for infinitely long fins is

kA
Linﬁnitely long 2 265 ﬁ

Temperature Distributions for the Special Cases

Perfect Contact at the Fin Base and Tip Cooling
0(z)
O

where ¢ is defined above.

= coshmz — ¢ sin me, 0<z<L

Perfect Contact at Fin Base and Fin Tip

f(x¢) sinhm(L — =)
= 0<zeg<L
6y sinhmL =r=

Perfect Contact at Fin Base and Adiabatic Fin Tip

f(x) coshm(L — =)
= 0<zeg<L
6y coshmL =t

Infinitely Long Fin With Perfect Contact at Base

f(x) _ [kA
— L =™ <z<L>2. —
Py e , 0<e<L>265 PP

The fin efficiency is defined for fins with perfect base contact and adiabatic tip
as:

Fin Efficiency

n = Qﬁn < 1
Qideal

5



where the ideal fin heat transfer rate is defined as
. L
Qiaes= [ P da
0

which becomes

Qideal = h P L 6,

when #(z) = 6, which corresponds to fins whose thermal conductivity ap-
proaches infinitely large values.



