13-31 The partial pressures of a gas mixture are given. The mole fractions, the mass fractions, the mixture molar mass, the apparent gas constant, the constant-volume specific heat, and the specific heat ratio are to be determined.

Properties The molar masses of $\mathrm{CO}_{2}, \mathrm{O}_{2}$ and $\mathrm{N}_{2}$ are $44.0,32.0$, and $28.0 \mathrm{~kg} / \mathrm{kmol}$, respectively (Table A-1). The constantvolume specific heats of these gases at 300 K are 0.657 , 0.658 , and $0.743 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$, respectively (Table A-2a).
Analysis The total pressure is

$$
P_{\text {total }}=P_{\mathrm{CO} 2}+P_{\mathrm{O} 2}+P_{\mathrm{N} 2}=12.5+37.5+50=100 \mathrm{kPa}
$$

The volume fractions are equal to the pressure fractions. Then,

$$
\begin{aligned}
y_{\mathrm{CO} 2} & =\frac{P_{\mathrm{CO} 2}}{P_{\text {total }}}=\frac{12.5}{100}=\mathbf{0 . 1 2 5} \\
y_{\mathrm{O} 2} & =\frac{P_{\mathrm{O} 2}}{P_{\text {total }}}=\frac{37.5}{100}=\mathbf{0 . 3 7 5} \\
y_{\mathrm{N} 2} & =\frac{P_{\mathrm{N} 2}}{P_{\text {total }}}=\frac{50}{100}=\mathbf{0 . 5 0}
\end{aligned}
$$

Partial pressures $\mathrm{CO}_{2}, 12.5 \mathrm{kPa}$ $\mathrm{O}_{2}, 37.5 \mathrm{kPa}$ $\mathrm{N}_{2}, 50 \mathrm{kPa}$

We consider 100 kmol of this mixture. Then the mass of each component are

$$
\begin{aligned}
m_{\mathrm{CO} 2} & =N_{\mathrm{CO} 2} M_{\mathrm{CO} 2}=(12.5 \mathrm{kmol})(44 \mathrm{~kg} / \mathrm{kmol})=550 \mathrm{~kg} \\
m_{\mathrm{O} 2} & =N_{\mathrm{O} 2} M_{\mathrm{O} 2}=(37.5 \mathrm{kmol})(32 \mathrm{~kg} / \mathrm{kmol})=1200 \mathrm{~kg} \\
m_{\mathrm{N} 2} & =N_{\mathrm{N} 2} M_{\mathrm{N} 2}=(50 \mathrm{kmol})(28 \mathrm{~kg} / \mathrm{kmol})=1400 \mathrm{~kg}
\end{aligned}
$$

The total mass is

$$
m_{m}=m_{\mathrm{N} 2}+m_{\mathrm{O} 2}+m_{\mathrm{Ar}}=550+1200+1400=3150 \mathrm{~kg}
$$

Then the mass fractions are

$$
\begin{aligned}
\mathrm{mf}_{\mathrm{CO} 2} & =\frac{m_{\mathrm{CO} 2}}{m_{m}}=\frac{550 \mathrm{~kg}}{3150 \mathrm{~kg}}=\mathbf{0 . 1 7 4 6} \\
\mathrm{mf}_{\mathrm{O} 2} & =\frac{m_{\mathrm{O} 2}}{m_{m}}=\frac{1200 \mathrm{~kg}}{3150 \mathrm{~kg}}=\mathbf{0 . 3 8 1 0} \\
\mathrm{mf}_{\mathrm{N} 2} & =\frac{m_{\mathrm{N} 2}}{m_{m}}=\frac{1400 \mathrm{~kg}}{3150 \mathrm{~kg}}=\mathbf{0 . 4 4 4 4}
\end{aligned}
$$

The apparent molecular weight of the mixture is

$$
M_{m}=\frac{m_{m}}{N_{m}}=\frac{3150 \mathrm{~kg}}{100 \mathrm{kmol}}=\mathbf{3 1 . 5 0 \mathrm { kg } / \mathbf { k m o l }}
$$

The constant-volume specific heat of the mixture is determined from

$$
\begin{aligned}
c_{v} & =\mathrm{mf}_{\mathrm{C} 22} c_{v, \mathrm{CO} 2}+\mathrm{mf}_{\mathrm{O} 2} c_{v, \mathrm{O} 2}+\mathrm{mf}_{\mathrm{N} 2} c_{v, \mathrm{~N} 2} \\
& =0.1746 \times 0.657+0.3810 \times 0.658+0.4444 \times 0.743 \\
& =\mathbf{0 . 6 9 5 6} \mathbf{~ k J} / \mathbf{k g} \cdot \mathbf{K}
\end{aligned}
$$

The apparent gas constant of the mixture is

$$
R=\frac{R_{u}}{M_{m}}=\frac{8.314 \mathrm{~kJ} / \mathrm{kmol} \cdot \mathrm{~K}}{31.50 \mathrm{~kg} / \mathrm{kmol}}=\mathbf{0 . 2 6 3 9 \mathrm { kJ } / \mathrm { kg } \cdot \mathrm { K } .}
$$

The constant-pressure specific heat of the mixture and the specific heat ratio are

$$
\begin{aligned}
& c_{p}=c_{v}+R=0.6956+0.2639=\mathbf{0 . 9 5 9 5} \mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
& k=\frac{c_{p}}{c_{v}}=\frac{0.9595 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}}{0.6956 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}}=\mathbf{1 . 3 7 9}
\end{aligned}
$$

13-34 The masses, temperatures, and pressures of two gases contained in two tanks connected to each other are given. The valve connecting the tanks is opened and the final temperature is measured. The volume of each tank and the final pressure are to be determined.

Assumptions Under specified conditions both $\mathrm{N}_{2}$ and $\mathrm{O}_{2}$ can be treated as ideal gases, and the mixture as an ideal gas mixture

Properties The molar masses of $\mathrm{N}_{2}$ and $\mathrm{O}_{2}$ are 28.0 and $32.0 \mathrm{~kg} / \mathrm{kmol}$, respectively. The gas constants of $\mathrm{N}_{2}$ and $\mathrm{O}_{2}$ are 0.2968 and $0.2598 \mathrm{kPa} \cdot \mathrm{m}^{3} / \mathrm{kg} \cdot \mathrm{K}$, respectively (Table A-1).

Analysis The volumes of the tanks are

$$
\begin{array}{l|l|}
\boldsymbol{V}_{\mathrm{N}_{2}}=\left(\frac{m R T}{P}\right)_{\mathrm{N}_{2}}=\frac{(2 \mathrm{~kg})\left(0.2968 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(298 \mathrm{~K})}{550 \mathrm{kPa}}=\mathbf{0 . 3 2 2} \mathbf{~ m}^{3} & \begin{array}{c}
2 \mathrm{~kg} \mathrm{~N} \\
2
\end{array} \\
\boldsymbol{V}_{\mathrm{O}_{2}}=\left(\frac{m R T}{P}\right)_{\mathrm{O}_{2}}=\frac{(4 \mathrm{~kg})\left(0.2598 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(298 \mathrm{~K})}{150 \mathrm{kPa}}=\mathbf{2 5 0 6 5} \mathrm{m}^{3} & \begin{array}{c}
4 \mathrm{~kg} \mathrm{O} \\
250 \mathrm{KPa} \\
25^{\circ} \mathrm{C} \\
150 \mathrm{kPa}
\end{array} \\
\boldsymbol{V}_{\text {total }}=\boldsymbol{V}_{\mathrm{N}_{2}}+\boldsymbol{V}_{\mathrm{O}_{2}}=0.322 \mathrm{~m}^{3}+2.065 \mathrm{~m}^{3}=2.386 \mathrm{~m}^{3}
\end{array}
$$

Also,

$$
\begin{aligned}
& N_{\mathrm{N}_{2}}=\frac{m_{\mathrm{N}_{2}}}{M_{\mathrm{N}_{2}}}=\frac{2 \mathrm{~kg}}{28 \mathrm{~kg} / \mathrm{kmol}}=0.07143 \mathrm{kmol} \\
& N_{\mathrm{O}_{2}}=\frac{m_{\mathrm{O}_{2}}}{M_{\mathrm{O}_{2}}}=\frac{4 \mathrm{~kg}}{32 \mathrm{~kg} / \mathrm{kmol}}=0.125 \mathrm{kmol} \\
& N_{m}=N_{\mathrm{N}_{2}}+N_{\mathrm{O}_{2}}=0.07143 \mathrm{kmol}+0.125 \mathrm{kmol}=0.1964 \mathrm{kmol}
\end{aligned}
$$

Thus,

$$
P_{m}=\left(\frac{N R_{u} T}{\boldsymbol{V}}\right)_{m}=\frac{(0.1964 \mathrm{kmol})\left(8.314 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kmol} \cdot \mathrm{~K}\right)(298 \mathrm{~K})}{2.386 \mathrm{~m}^{3}}=\mathbf{2 0 4} \mathbf{~ k P a}
$$

13-55 The volume fractions of components of a gas mixture are given. This mixture is expanded isentropically to a specified pressure. The work produced per unit mass of the mixture is to be determined.

Assumptions All gases will be modeled as ideal gases with constant specific heats.
Properties The molar masses of $\mathrm{H}_{2}, \mathrm{He}$, and $\mathrm{N}_{2}$ are $2.0,4.0$, and $28.0 \mathrm{~kg} / \mathrm{kmol}$, respectively (Table A-1). The constantpressure specific heats of these gases at room temperature are $14.307,5.1926$, and $1.039 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$, respectively (Table A2a).
Analysis We consider 100 kmol of this mixture. Noting that volume fractions are equal to the mole fractions, mass of each component are

$$
\begin{aligned}
& m_{\mathrm{H} 2}=N_{\mathrm{H} 2} M_{\mathrm{H} 2}=(30 \mathrm{kmol})(2 \mathrm{~kg} / \mathrm{kmol})=60 \mathrm{~kg} \\
& m_{\mathrm{He}}=N_{\mathrm{He}} M_{\mathrm{He}}=(40 \mathrm{kmol})(4 \mathrm{~kg} / \mathrm{kmol})=160 \mathrm{~kg} \\
& m_{\mathrm{N} 2}=N_{\mathrm{N} 2} M_{\mathrm{N} 2}=(30 \mathrm{kmol})(28 \mathrm{~kg} / \mathrm{kmol})=840 \mathrm{~kg}
\end{aligned}
$$

The total mass is

$$
m_{m}=m_{\mathrm{H} 2}+m_{\mathrm{He}}+m_{\mathrm{N} 2}=60+160+840=1060 \mathrm{~kg}
$$

$30 \% \mathrm{H}_{2}$
40\% He
$30 \% \mathrm{~N}_{2}$
(by volume)
$5 \mathrm{MPa}, 600^{\circ} \mathrm{C}$

Then the mass fractions are

$$
\begin{aligned}
& \mathrm{mf}_{\mathrm{H} 2}=\frac{m_{\mathrm{H} 2}}{m_{m}}=\frac{60 \mathrm{~kg}}{1060 \mathrm{~kg}}=0.05660 \\
& \mathrm{mf}_{\mathrm{He}}=\frac{m_{\mathrm{He}}}{m_{m}}=\frac{160 \mathrm{~kg}}{1060 \mathrm{~kg}}=0.1509 \\
& \mathrm{mf}_{\mathrm{N} 2}=\frac{m_{\mathrm{N} 2}}{m_{m}}=\frac{840 \mathrm{~kg}}{1060 \mathrm{~kg}}=0.7925
\end{aligned}
$$

The apparent molecular weight of the mixture is

$$
M_{m}=\frac{m_{m}}{N_{m}}=\frac{1060 \mathrm{~kg}}{100 \mathrm{kmol}}=10.60 \mathrm{~kg} / \mathrm{kmol}
$$

The constant-pressure specific heat of the mixture is determined from

$$
\begin{aligned}
c_{p} & =\mathrm{mf}_{\mathrm{H} 2} c_{p, \mathrm{H} 2}+\mathrm{mf}_{\mathrm{He}} c_{p, \mathrm{He}}+\mathrm{mf}_{\mathrm{N} 2} c_{p, \mathrm{~N} 2} \\
& =0.05660 \times 14.307+0.1509 \times 5.1926+0.7925 \times 1.039 \\
& =2.417 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
$$

The apparent gas constant of the mixture is

$$
R=\frac{R_{u}}{M_{m}}=\frac{8.314 \mathrm{~kJ} / \mathrm{kmol} \cdot \mathrm{~K}}{10.60 \mathrm{~kg} / \mathrm{kmol}}=0.7843 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
$$

Then the constant-volume specific heat is

$$
c_{v}=c_{p}-R=2.417-0.7843=1.633 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
$$

The specific heat ratio is

$$
k=\frac{c_{p}}{c_{v}}=\frac{2.417}{1.633}=1.480
$$

The temperature at the end of the expansion is

$$
T_{2}=T_{1}\left(\frac{P_{2}}{P_{1}}\right)^{(k-1) / k}=(873 \mathrm{~K})\left(\frac{200 \mathrm{kPa}}{5000 \mathrm{kPa}}\right)^{0.48 / 1.48}=307 \mathrm{~K}
$$

An energy balance on the adiabatic expansion process gives

$$
w_{\text {out }}=c_{p}\left(T_{1}-T_{2}\right)=(2.417 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(873-307) \mathrm{K}=\mathbf{1 3 6 8} \mathbf{~ k J} / \mathbf{k g}
$$

13-56 The mass fractions of components of a gas mixture are given. This mixture is enclosed in a rigid, well-insulated vessel, and a paddle wheel in the vessel is turned until specified amount of work have been done on the mixture. The mixture's final pressure and temperature are to be determined.

Assumptions All gases will be modeled as ideal gases with constant specific heats.
Properties The molar masses of $\mathrm{N}_{2}, \mathrm{He}, \mathrm{CH}_{4}$, and $\mathrm{C}_{2} \mathrm{H}_{6}$ are $28.0,4.0,16.0$, and $30.0 \mathrm{~kg} / \mathrm{kmol}$, respectively (Table A-1). The constant-pressure specific heats of these gases at room temperature are $1.039,5.1926,2.2537$, and $1.7662 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$, respectively (Table A-2a).
Analysis We consider 100 kg of this mixture. The mole numbers of each component are

$$
\begin{aligned}
N_{\mathrm{N} 2} & =\frac{m_{\mathrm{N} 2}}{M_{\mathrm{N} 2}}=\frac{15 \mathrm{~kg}}{28 \mathrm{~kg} / \mathrm{kmol}}=0.5357 \mathrm{kmol} \\
N_{\mathrm{He}} & =\frac{m_{\mathrm{He}}}{M_{\mathrm{He}}}=\frac{5 \mathrm{~kg}}{4 \mathrm{~kg} / \mathrm{kmol}}=1.25 \mathrm{kmol} \\
N_{\mathrm{CH} 4} & =\frac{m_{\mathrm{CH} 4}}{M_{\mathrm{CH} 4}}=\frac{60 \mathrm{~kg}}{16 \mathrm{~kg} / \mathrm{kmol}}=3.75 \mathrm{kmol} \\
N_{\mathrm{C} 2 \mathrm{H} 6} & =\frac{m_{\mathrm{C} 2 \mathrm{H} 6}}{M_{\mathrm{C} 2 \mathrm{H} 6}}=\frac{20 \mathrm{~kg}}{30 \mathrm{~kg} / \mathrm{kmol}}=0.6667 \mathrm{kmol}
\end{aligned}
$$



The mole number of the mixture is

$$
N_{m}=N_{\mathrm{N} 2}+N_{\mathrm{He}}+N_{\mathrm{CH} 4}+N_{\mathrm{C} 2 \mathrm{H} 6}=0.5357+1.25+3.75+0.6667=6.2024 \mathrm{kmol}
$$

The apparent molecular weight of the mixture is

$$
M_{m}=\frac{m_{m}}{N_{m}}=\frac{100 \mathrm{~kg}}{6.2024 \mathrm{kmol}}=16.12 \mathrm{~kg} / \mathrm{kmol}
$$

The constant-pressure specific heat of the mixture is determined from

$$
\begin{aligned}
c_{p} & =\mathrm{mf}_{\mathrm{N} 2} c_{p, \mathrm{~N} 2}+\mathrm{mf}_{\mathrm{He}} c_{p, \mathrm{He}}+\mathrm{mf}_{\mathrm{CH} 4} c_{p, \mathrm{CH} 4}+\mathrm{mf}_{\mathrm{C} 2 \mathrm{H} 6} c_{p, \mathrm{C} 2 \mathrm{H} 6} \\
& =0.15 \times 1.039+0.05 \times 5.1926+0.60 \times 2.2537+0.20 \times 1.7662 \\
& =2.121 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
$$

The apparent gas constant of the mixture is

$$
R=\frac{R_{u}}{M_{m}}=\frac{8.134 \mathrm{~kJ} / \mathrm{kmol} \cdot \mathrm{~K}}{16.12 \mathrm{~kg} / \mathrm{kmol}}=0.5158 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
$$

Then the constant-volume specific heat is

$$
c_{v}=c_{p}-R=2.121-0.5158=1.605 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
$$

The mass in the container is

$$
m_{m}=\frac{P_{1} V_{m}}{R T_{1}}=\frac{(200 \mathrm{kPa})\left(10 \mathrm{~m}^{3}\right)}{\left(0.5158 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(293 \mathrm{~K})}=13.23 \mathrm{~kg}
$$

An energy balance on the system gives

$$
W_{\mathrm{sh}, \mathrm{in}}=m_{m} c_{v}\left(T_{2}-T_{1}\right) \longrightarrow T_{2}=T_{1}+\frac{W_{\mathrm{sh}, \mathrm{in}}}{m_{m} c_{v}}=(293 \mathrm{~K})+\frac{100 \mathrm{~kJ}}{(13.23 \mathrm{~kg})(1.605 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})}=\mathbf{2 9 7 . 7} \mathbf{~ K}
$$

Since the volume remains constant and this is an ideal gas,

$$
P_{2}=P_{1} \frac{T_{2}}{T_{1}}=(200 \mathrm{kPa}) \frac{297.7 \mathrm{~K}}{293 \mathrm{~K}}=\mathbf{2 0 3 . 2} \mathbf{~ k P a}
$$

13-68 A piston-cylinder device contains a gas mixture at a given state. Heat is transferred to the mixture. The amount of heat transfer and the entropy change of the mixture are to be determined.
Assumptions 1 Under specified conditions both $\mathrm{H}_{2}$ and $\mathrm{N}_{2}$ can be treated as ideal gases, and the mixture as an ideal gas mixture. 2 Kinetic and potential energy changes are negligible.
Properties The constant pressure specific heats of $\mathrm{H}_{2}$ and $\mathrm{N}_{2}$ at 450 K are $14.501 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$ and $1.049 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$, respectively. (Table A-2b).
Analysis (a) Noting that $P_{2}=P_{1}$ and $\boldsymbol{V}_{2}=2 \boldsymbol{V}_{1}$,

$$
\frac{P_{2} \boldsymbol{V}_{2}}{T_{2}}=\frac{P_{1} \boldsymbol{V}_{1}}{T_{1}} \longrightarrow T_{2}=\frac{2 \boldsymbol{V}_{1}}{V_{1}} T_{1}=2 T_{1}=(2)(300 \mathrm{~K})=600 \mathrm{~K}
$$

From the closed system energy balance relation,

$$
\begin{aligned}
E_{\text {in }}-E_{\text {out }} & =\Delta E_{\text {system }} \\
Q_{\text {in }}-W_{b, \text { out }} & =\Delta U \rightarrow \quad Q_{\text {in }}=\Delta H
\end{aligned}
$$


since $W_{\mathrm{b}}$ and $\Delta U$ combine into $\Delta H$ for quasi-equilibrium constant pressure processes.

$$
\begin{aligned}
Q_{\text {in }} & =\Delta H=\Delta H_{\mathrm{H}_{2}}+\Delta H_{\mathrm{N}_{2}}=\left[m c_{p, \text { avg }}\left(T_{2}-T_{1}\right)\right\rfloor_{\mathrm{H}_{2}}+\left[m c_{p, \text { avg }}\left(T_{2}-T_{1}\right)\right\rfloor_{\mathrm{N}_{2}} \\
& =(0.5 \mathrm{~kg})(14.501 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(600-300) \mathrm{K}+(1.6 \mathrm{~kg})(1.049 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(600-300) \mathrm{K} \\
& =\mathbf{2 6 7 9} \mathbf{k J}
\end{aligned}
$$

(b) Noting that the total mixture pressure, and thus the partial pressure of each gas, remains constant, the entropy change of the mixture during this process is

$$
\begin{aligned}
\Delta S_{\mathrm{H}_{2}} & =\left[m\left(s_{2}-s_{1}\right)\right]_{\mathrm{H}_{2}}=m_{\mathrm{H}_{2}}\left(c_{p} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{P_{2}}{P_{1}}\right)_{\mathrm{H}_{2}}=m_{\mathrm{H}_{2}}\left(c_{p} \ln \frac{T_{2}}{T_{1}}\right)_{\mathrm{H}_{2}} \\
& =(0.5 \mathrm{~kg})(14.501 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}) \ln \frac{600 \mathrm{~K}}{300 \mathrm{~K}} \\
& =5.026 \mathrm{~kJ} / \mathrm{K} \\
\Delta S_{\mathrm{N}_{2}} & =\left[m\left(s_{2}-s_{1}\right)\right]_{\mathrm{N}_{2}}=m_{\mathrm{N}_{2}}\left(c_{p} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{P_{2}}{P_{1}}\right)_{\mathrm{N}_{2}}=m_{\mathrm{N}_{2}}\left(c_{p} \ln \frac{T_{2}}{T_{1}}\right)_{\mathrm{N}_{2}} \\
& =(1.6 \mathrm{~kg})(1.049 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}) \ln \frac{600 \mathrm{~K}}{300 \mathrm{~K}} \\
& =1.163 \mathrm{~kJ} / \mathrm{K} \\
\Delta S_{\text {total }} & =\Delta S_{\mathrm{H}_{2}}+\Delta S_{\mathrm{N}_{2}}=5.026 \mathrm{~kJ} / \mathrm{K}+1.163 \mathrm{~kJ} / \mathrm{K}=\mathbf{6 . 1 9} \mathbf{~ k J} / \mathrm{K}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2011 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.

