1. First Order Linear Differential Equations

General form: $\frac{dy}{dt} + P(t)y = Q(t) \implies$ integrating factor $\mu(t) = e^{\int P(t)dt}$

General Solution is: $(t) = \frac{\int \mu(t)Q(t)dt + c}{\mu(t)}$ *y t t* μ μ $=\frac{\int \mu(t) Q(t) dt + c}{\int \mu(t) Q(t) dt}$ (Solution valid over any interval where P(t)

and Q(t) are continuous.)

If constant coefficients: $\frac{dy}{dt} = -py + q \implies y(t) = \frac{q}{p} + ce^{-pt}$ and $\lim_{t \to \infty} y(t) = \frac{q}{p}$ $p \qquad \qquad \lim_{t \to \infty} p$ − $=\frac{q}{p}+ce^{-pt}$ and $\lim_{t\to\infty}y(t)=$

2. Nonlinear, First Order Differential Equations

Given:
$$
\frac{dy}{dx} = f(y, x)
$$
, where $f(y, x)$ is a nonlinear function of y.

There are several solution methods available:

- a) **Separation of variables** if possible, to obtain: $h(y)dy = g(x)dx$
- b) **Homogeneous equations** if $\frac{dy}{dx} = G \frac{y}{x}$ J $\left(\frac{y}{x}\right)$ $= G\left(\frac{y}{x}\right)$ *dx* $\frac{dy}{dx} = G\left(\frac{y}{x}\right)$. Let $y = vx$ and transform to solve.
- c) **Exact equations** of form $Mdx + Ndy = 0$. If *x N y M* $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, easy to solve.
- d) Equations made exact by an **integrating factor**:

If
$$
\frac{M_y - N_x}{N} = \varphi(x)
$$
 then $\mu(x) = e^{\int \varphi(x) dx}$
If $\frac{N_x - M_y}{M} = \psi(y)$ then $\mu(y) = e^{\int \psi(y) dy}$

e) **Transformation** of dependent variable: Let $y = f(v)$, $\frac{dy}{dx} = f'(v) \frac{dv}{dx}$ *dx* $\frac{dy}{dt} = f'(v) \frac{dv}{dt}$, etc.