
ME 203: Some Special Exact Differentials     September 17 2002 
 

When solving first order differential equations which are given in differential form, there are 
certain combinations of variables which immediately form exact differentials. 
 
Here are some combinations that you may come across: 
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Illustrative Examples: 

1. Solve 2 2( ) 0.xdx y x y dy+ − + =  

Solution:  Rewrite as: 
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 The left hand side is now the same as case 5 above, i.e. ( )2 2d x y dy+ = . 

Integration leads to 2 2x y y c+ = +   or,  
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(N.B.  The original example could also have been solved as a homogeneous equation.  Try it!) 

 

2. Solve ( )2 2 0.x y y dx xdy+ + − =  

Solution:  It may not be immediately obvious, but dividing through by ( )2 2x y+ will produce a 

recognizable form: 2 2 0ydx xdydx
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This is like case 3 above, so we can write: 
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, which can be immediately integrated to yield: 1tan .yx c
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