1. Text – Section 2.2

7. $\frac{dy}{dx} = \frac{1 - x^2}{v^2}$ Solution: Solve $\frac{dy}{dx} = \frac{1-x^2}{v^2}$ (1)Rewrite the equation: $v^2 dv = (1 - x^2) dx$ Integrating, we have $\int y^2 dy = \int (1 - x^2) dx$ $\Rightarrow \qquad \frac{y^3}{2} = x - \frac{x^3}{3} + C_1$ Solve the last equation for y gives $v = (3x - x^3 + C)^{1/3}$ 12. $x \frac{dv}{dx} = \frac{1-4v^2}{3v}$ Solution: Solve $x \frac{dv}{dx} = \frac{1 - 4v^2}{3v}$ (2)Rewrite the equation: $\frac{3v}{1-4v^2}dv = \frac{1}{x}dx$ Integrating, we have $\int \frac{3v}{1-4v^2} dv = -\frac{3}{8} \int \frac{d(1-4v^2)}{1-4v^2} = \int \frac{1}{x} dx$ $-\frac{3}{9}\ln|1-4v^2| = \ln|x| + C_1$ \Rightarrow

The solution to equation (2) is given implicitly by

 $1 - 4v^2 = Cx^{-8/3}$

Solve the last equation for v gives

$$v = \pm \frac{1}{2}\sqrt{1 - Cx^{-8/3}}$$

21.
$$\frac{dy}{dx} = 2\sqrt{y+1}\cos x, \quad y(\pi) = 0$$

Solution:

Solve $\frac{dy}{dx} = 2\sqrt{y+1}\cos x$ (3)Rewrite the equation: $\frac{dy}{2\sqrt{v+1}} = \cos x dx$ Integrating, we have $\int \frac{1}{2\sqrt{v+1}} dy = \int \cos x dx$ $\sqrt{y+1} = \sin x + C$ \Rightarrow Substituting $x = \pi$ and $y(\pi) = 0$ gives $1 = \sin \pi + C \Rightarrow C = 1$ Thus, $\sqrt{v+1} = \sin x + 1$ and so $y = (\sin x + 1)^2 - 1 = \sin^2 x + 2\sin x$ 29. $\frac{dy}{dx} = y^{1/3}, y(0) = 0$ Solution: Solve $\frac{dy}{dt} = y^{1/3}$ (4)(a) Rewriting the equation gives, $v^{-1/3}dv = dx$ Integrating, we have $\int y^{-1/3} dy = \int dx$ $\Rightarrow \qquad \frac{3y^{2/3}}{2} = x + C_1$ Solve the last equation for y gives $y = \left(\frac{2x}{3} + C\right)^{3/2}$ This shows that $y = \left(\frac{2x}{3} + C\right)^{3/2}$ is a solution to equation (4). (b) Substituting x = 0 and y(0) = 0 into the solution gives $0 = (0+C)^{3/2} \implies C = 0$

Thus the solution for this initial value problem is $y = (2x/3)^{3/2}$ for $x \ge 0$

(c) Substituting constant function $y \equiv 0$ into equation (4):

$$\frac{dy}{dx} = y^{1/3}$$

The left hand side is: $\frac{dy}{dx} = 0$

The right hand side is: $y^{1/3} = 0$ Thus, LHS = RHS Also y = 0 when x = 0.

This shows that the constant function $y \equiv 0$ is also a solution to the initial value problem. Hence this initial value problem does not have a unique solution.

(d)
$$\frac{dy}{dx} = f(x, y) = y^{1/3}$$

The conditions for a unique solution in theorem 1 are that f and $\partial f / \partial y$ are continuous function in a rectangle

$$R = \{(x, y) : a < x < b, c < y < d\}$$

that contains the point (x_0, y_0) .

In this problem, function f is continuous in a rectangle

$$R = \{(x, y) : -\infty < x < \infty, -\infty < y < \infty\}.$$

However

$$\frac{\partial f}{\partial y} = \frac{1}{3y^{2/3}}, \quad y \neq 0$$

We can find that $\frac{\partial f}{\partial y}$ is not continuous at (0,0).

The conditions of Theorem 1 are not satisfied for this initial value problem.

$$34. \ \frac{dT}{dt} = k(M-T)$$

Solution:

Solve
$$\frac{dT}{dt} = k(M - T)$$
 (5)

(a) Rewriting the equation gives,

$$\frac{dT}{M-T} = kdt$$

Integrating, we have

$$\int \frac{dT}{M-T} = \int kdt$$
$$\Rightarrow \quad -\ln|M-T| = kt + C$$

Solve the last equation for T gives

$$T = M + Ce^{-kt}$$

(b) In this problem, since the initial value is T(0) = 100 and M = 70, we can solve the constant.

 $100 = 70 + Ce^{0} \Rightarrow C = 30$ Then the solution for this initial value problem is $T = 70 + 30e^{-kt}$ Since after 6 min, the thermometer read 80°, we have, $80 = 70 + 30e^{-6k}$ Solve the last equation gives $k = (\ln 3)/6 \approx 0.1831$ Then after 20 min (t = 20), we have, $T = 70 + 30e^{-(\ln 3)\cdot 20/6} = 70.77^{\circ}$

2. Text – Section 2.3

7.
$$\frac{dy}{dx} - y = e^{3x}$$

Solution:
Solve $\frac{dy}{dx} - y = e^{3x}$ (6)
Here $P(x) = -1$, so
 $\int P(x) dx = \int (-1) dx = -x$

Thus an integrating factor is,

$$\mu(x) = e^{-1}$$

Multiplying equation (6) by $\mu(x)$ yields

$$e^{-x}\frac{dy}{dx} - e^{-x}y = e^{2x}$$

That is

$$\frac{d}{dx}\left(e^{-x}y\right) = e^{2x}$$

Integrate both sides and solve for y to find

$$e^{-x}y = \int e^{2x} dx = \frac{1}{2}e^{2x} + C$$

Thus

$$y = \frac{1}{2}e^{3x} + Ce^{x}$$

$$13. \ y\frac{dx}{dy} + 2x = 5y^3$$

Solution:

Solve
$$y \frac{dx}{dy} + 2x = 5y^3$$
 (7)

Standard Form:

$$\frac{dx}{dy} + \frac{2}{y}x = 5y^2 \tag{8}$$

Here $P(y) = \frac{2}{y}$, so

$$\int P(y)dy = \int \frac{2}{y}dy = 2\ln|y|$$

Thus an integrating factor is,

$$\mu(y) = e^{2\ln|y|} = y^2$$

Multiplying equation (8) by $\mu(y)$ yields

$$y^2 \frac{dx}{dy} + 2xy = 5y^4$$

That is

$$\frac{d}{dy}\left(xy^2\right) = 5y^4$$

Integrate both sides and solve for x to find

$$xy^2 = \int 5y^4 dy = y^5 + C$$

Thus

$$x = y^3 + Cy^{-2}$$

18.
$$\frac{dy}{dx} + 4y - e^{-x} = 0$$
, $y(0) = \frac{4}{3}$

Solution:

Solve $\frac{dy}{dx} + 4y - e^{-x} = 0$ (9)

Standard Form:

$$\frac{dy}{dx} + 4y = e^{-x}$$

Here P(x) = 4, so

$$\int P(x)dx = \int 4dx = 4x$$

Thus an integrating factor is,

$$\mu(x) = e^{4x}$$

Multiplying equation (1) by $\mu(x)$ yields

$$e^{4x}\frac{dy}{dx} + 4e^{4x}y = e^{3x}$$

That is

$$\frac{d}{dx}\left(e^{4x}y\right) = e^{3x}$$

Integrate both sides and solve for y to find

$$e^{4x}y = \int e^{3x}dx = \frac{1}{3}e^{3x} + C$$

Thus

$$y = \frac{1}{3}e^{-x} + Ce^{-4x}$$

Substituting $x = 0$ and $y(0) = \frac{4}{3}$ gives
$$\frac{4}{3} = \frac{1}{3}e^{0} + Ce^{0} \Rightarrow C = 1$$

Thus the solution is
$$y = \frac{1}{3}e^{-x} + e^{-4x}$$

3. Text – Section 2.4

9. $(2xy+3)dx + (x^2 - 1)dy = 0$ Solution: Solve $(2xy+3)dx + (x^2 - 1)dy = 0$ (10) Here M(x, y) = 2xy + 3 and $N(x, y) = x^2 - 1$. Because

$$\frac{\partial M}{\partial y} = 2x = \frac{\partial N}{\partial x}$$

equation (10) is exact.

To find F(x, y), we begin by integrating M with respect to x:

$$F(x, y) = \int (2xy + 3)dx = x^2y + 3x + g(y)$$
(11)

Differentiating F(x, y) with respect to y gives

 $\frac{\partial F}{\partial y}(x, y) = N(x, y)$ $\Rightarrow \qquad x^2 + g'(y) = x^2 - 1$ Thus g'(y) = -1, we can take g(y) = -y. Hence, from (11), we have

$$F(x,y) = x^2y + 3x - y$$

The solution to equation (10) is given implicitly by

 $x^{2}y + 3x - y = C$ Thus we have $y = (C - 3x)/(x^{2} - 1)$

15. $\cos\theta dr - (r\sin\theta - e^{\theta})d\theta = 0$ Solution: Solve $\cos\theta dr - (r\sin\theta - e^{\theta})d\theta = 0$ (12)

This differential equation is expressed in the variable r and θ . Since the variables x and y are dummy variables, this equation is solved in exactly the same way as an equation in x and y. We will look for a solution with independent variable θ and dependent variable r. We see that the differential equation is expressed in the differential form

$$M(r,\theta)dr + N(r,\theta)d\theta = 0$$

Here $M(r, \theta) = \cos \theta$ and $N(r, \theta) = -(r \sin \theta - e^{\theta})$.

Because

$$\frac{\partial M}{\partial \theta} = -\sin\theta = \frac{\partial N}{\partial r}$$

equation (12) is exact.

To find $F(r, \theta)$, we begin by integrating M with respect to r:

$$F(r,\theta) = \int \cos\theta dr = r\cos\theta + g(\theta)$$

Next we take the partial derivative of (13)

$$\frac{\partial F}{\partial \theta}(r,\theta) = N(r,\theta)$$

$$\Rightarrow -r\sin\theta + g'(\theta) = -(r\sin\theta - e)$$

Thus $g'(\theta) = e^{\theta}$, we can take $g(\theta) = e^{\theta}$

$$F(r,\theta) = r\cos\theta + e^{\theta}$$

The solution to equation (12) is given implicitly by

 $r\cos\theta + e^{\theta} = C$ Thus we have $r = (C - e^{\theta})/\cos\theta = (C - e^{\theta})\sec\theta$

24. $(e^{t}x+1)dt + (e^{t}-1)dx = 0$, x(1) = 1 **Solution:** Solve $(e^{t}x+1)dt + (e^{t}-1)dx = 0$ (14) Here $M(t,x) = e^{t}x+1$ and $N(t,x) = e^{t}-1$. Because

$$\frac{\partial M}{\partial x} = e^t = \frac{\partial N}{\partial t}$$

equation (14) is exact.

To find F(t, x), we begin by integrating M with respect to t:

$$F(t,x) = \int (e^{t}x + 1)dt = e^{t}x + t + g(x)$$
(15)

Next we take the partial derivative of (15)

$$\frac{\partial F}{\partial x}(t,x) = N(t,x)$$

$$\Rightarrow e^{t} + g'(x) = e^{t} - 1$$

Thus $g'(x) = -1$, we can take $g(x) = -x$
Hence, from (15), we have

$$F(t,x) = e^t x + t - x$$

The solution to equation (14) is given implicitly by

١

 $e^t x + t - x = C$

$$u = (C + t)/(c^t)$$

$$x = (C-t)/(e^t - 1)$$

We can determine the constant according the initial condition, that is,

$$1 = (C-1)/(e-1) \Longrightarrow C = e$$

Thus we have $x = (e-t)/(e^t - 1)$

4. Find the general solution to differential equation: $xdy - (y + x^3)dx = 0$.

Solution:

Thus

(13)

Solve $xdy - (y + x^3)dx = 0$ (16) Expand dx term: $xdy - ydx - x^3dx = 0$ Isolate xdy - ydx terms: $(xdy - ydx) = x^3dx$ Divide by x^2 to get form (1) from handout $\frac{xdy - ydx}{x^2} = xdx$ (17)

From (1), substitute
$$d\left(\frac{y}{x}\right) = \frac{xdy - ydx}{x^2}$$

$$d\left(\frac{y}{x}\right) = xdx$$

Solve by integrating both sides

$$\frac{y}{x} = \frac{x^2}{2} + C$$
$$y = \frac{x^3}{2} + Cx$$

 \Rightarrow