1. Text – Section 2.2

7. $\frac{dy}{dx} = \frac{1}{x^2}$ $1 - x^2$ *y x dx* $\frac{dy}{dx} = \frac{1-}{x}$ **Solution:** Solve $\frac{dy}{dx} = \frac{1}{x^2}$ $1 - x^2$ *y x dx* $\frac{dy}{dx} = \frac{1 - x^2}{x}$ (1) Rewrite the equation: $y^2 dy = (1 - x^2)dx$ Integrating, we have $\int y^2 dy = \int (1 - x^2) dx$ $\Rightarrow \frac{y}{2} = x - \frac{x}{2} + C_1$ 3 3 3 3 $\frac{y^3}{2} = x - \frac{x^3}{2} + C$ Solve the last equation for y gives $y = (3x - x^3 + C)^{1/3}$ 12. *v v dx* $x \frac{dv}{dx}$ 3 $=\frac{1-4v^2}{2}$ **Solution:** Solve *v v dx* $x \frac{dv}{dx}$ 3 $=\frac{1-4v^2}{2}$ (2) Rewrite the equation: $3v_{1}$ 1

$$
\frac{3v}{1-4v^2}dv = -\frac{1}{x}dx
$$

Integrating, we have

$$
\int \frac{3v}{1 - 4v^2} dv = -\frac{3}{8} \int \frac{d(1 - 4v^2)}{1 - 4v^2} = \int \frac{1}{x} dx
$$

\n
$$
\Rightarrow -\frac{3}{8} \ln |1 - 4v^2| = \ln |x| + C_1
$$

The solution to equation (2) is given implicitly by

 $1 - 4v^2 = Cx^{-8/3}$

Solve the last equation for *v* gives

$$
v = \pm \frac{1}{2} \sqrt{1 - C x^{-8/3}}
$$

21.
$$
\frac{dy}{dx} = 2\sqrt{y+1}\cos x, \ \ y(\pi) = 0
$$

Solution:

Solve $\frac{dy}{dx} = 2\sqrt{y+1}\cos x$ *dx* $\frac{dy}{dx} = 2\sqrt{y+1}\cos x$ (3) Rewrite the equation: *xdx y* $\frac{dy}{dx}$ = cos $\frac{dy}{2\sqrt{y+1}} =$ Integrating, we have $\int \frac{1}{2\sqrt{y+1}} dy = \int \cos x dx$ $2\sqrt{y+1}$ 1 $\Rightarrow \sqrt{y+1} = \sin x + C$ Substituting $x = \pi$ and $y(\pi) = 0$ gives $1 = \sin \pi + C \Rightarrow C = 1$ Thus, $\sqrt{y+1} = \sin x + 1$ and so $y = (\sin x + 1)^2 - 1 = \sin^2 x + 2\sin x$ 29. $\frac{dy}{dx} = y^{1/3}, \quad y(0) = 0$ **Solution:** Solve $\frac{dy}{dx} = y^{1/3}$ (4) (a) Rewriting the equation gives, $y^{-1/3} dy = dx$ Integrating, we have $\int y^{-1/3} dy = \int dx$ $\Rightarrow \frac{y}{2} = x + C_1$ 2/3 2 $\frac{3y^{2/3}}{2} = x + C$ Solve the last equation for *y* gives 3/2 3 $\left(\frac{2x}{2}+C\right)$ J $\left(\frac{2x}{2}+C\right)$ \setminus $y = \left(\frac{2x}{2} + C\right)$ This shows that 3/2 3 $\left(\frac{2x}{2}+C\right)$ J $\left(\frac{2x}{2}+C\right)$ J $y = \left(\frac{2x}{2} + C\right)^{3/2}$ is a solution to equation (4).

(b) Substituting $x = 0$ and $y(0) = 0$ into the solution gives

$$
0 = (0 + C)^{3/2} \implies C = 0
$$

Thus the solution for this initial value problem is $y = (2x/3)^{3/2}$ for $x \ge 0$

(c) Substituting constant function $y \equiv 0$ into equation (4):

$$
\frac{dy}{dx} = y^{1/3}
$$

The left hand side is: $\frac{dy}{dx} = 0$ *dx dy*

The right hand side is: $y^{1/3} = 0$ Thus, $LHS = RHS$ Also $y = 0$ when $x = 0$.

This shows that the constant function $y = 0$ is also a solution to the initial value problem. Hence this initial value problem does not have a unique solution.

(d)
$$
\frac{dy}{dx} = f(x, y) = y^{1/3}
$$

The conditions for a unique solution in theorem 1 are that *f* and ∂*f* ∂*y* are continuous function in a rectangle

$$
R = \{(x, y) : a < x < b, c < y < d\}
$$

that contains the point (x_0, y_0) .

In this problem, function f is continuous in a rectangle

$$
R = \{(x, y) : -\infty < x < \infty, -\infty < y < \infty\}.
$$

However

$$
\frac{\partial f}{\partial y} = \frac{1}{3y^{2/3}}, \quad y \neq 0
$$

We can find that *y f* ∂ $\frac{\partial f}{\partial \tau}$ is not continuous at $(0,0)$.

The conditions of Theorem 1 are not satisfied for this initial value problem.

$$
34. \ \frac{dT}{dt} = k(M - T)
$$

Solution:

Solve
$$
\frac{dT}{dt} = k(M - T)
$$
 (5)

(a) Rewriting the equation gives,

$$
\frac{dT}{M-T} = kdt
$$

Integrating, we have

$$
\int \frac{dT}{M - T} = \int kdt
$$

\n
$$
\Rightarrow \qquad -\ln|M - T| = kt + C_1
$$

Solve the last equation for *T* gives

$$
T = M + Ce^{-kt}
$$

 (b) In this problem, since the initial value is $T(0) = 100$ and $M = 70$, we can solve the constant.

 $100 = 70 + Ce^0 \Rightarrow C = 30$ Then the solution for this initial value problem is $T = 70 + 30e^{-kt}$ Since after 6 min, the thermometer read 80°, we have, $80 = 70 + 30e^{-6k}$ Solve the last equation gives $k = \frac{\ln 3}{6} \approx 0.1831$

Then after 20 min ($t = 20$), we have, $T = 70 + 30 e^{-(\ln 3) 20/6} = 70.77$ °

2. Text – Section 2.3

7.
$$
\frac{dy}{dx} - y = e^{3x}
$$

\nSolution:
\nSolve
$$
\frac{dy}{dx} - y = e^{3x}
$$
 (6)
\nHere $P(x) = -1$, so
\n
$$
\int P(x)dx = \int (-1)dx = -x
$$

Thus an integrating factor is,

$$
\mu(x)=e^{-x}
$$

Multiplying equation (6) by $\mu(x)$ yields

$$
e^{-x}\frac{dy}{dx} - e^{-x}y = e^{2x}
$$

That is

$$
\frac{d}{dx}\left(e^{-x}y\right)=e^{2x}
$$

Integrate both sides and solve for *y* to find

$$
e^{-x} y = \int e^{2x} dx = \frac{1}{2} e^{2x} + C
$$

Thus

$$
y = \frac{1}{2}e^{3x} + Ce^x
$$

$$
13. \ y \frac{dx}{dy} + 2x = 5y^3
$$

Solution:

Solve
$$
y \frac{dx}{dy} + 2x = 5y^3
$$
 (7)

Standard Form:

$$
\frac{dx}{dy} + \frac{2}{y}x = 5y^2
$$
 (8)

Here $P(y)$ *y* $P(y) = \frac{2}{y}$, so

$$
\int P(y)dy = \int \frac{2}{y} dy = 2 \ln|y|
$$

Thus an integrating factor is,

$$
\mu(y) = e^{2\ln|y|} = y^2
$$

Multiplying equation (8) by $\mu(y)$ yields

$$
y^2 \frac{dx}{dy} + 2xy = 5y^4
$$

That is

$$
\frac{d}{dy}\left(xy^2\right) = 5y^4
$$

Integrate both sides and solve for *x* to find

$$
xy^2 = \int 5y^4 dy = y^5 + C
$$

Thus

$$
x = y^3 + Cy^{-2}
$$

18.
$$
\frac{dy}{dx} + 4y - e^{-x} = 0, y(0) = \frac{4}{3}
$$

Solution:

Solve $\frac{dy}{dx} + 4y - e^{-x} = 0$ *dx* $\frac{dy}{dx} + 4y - e^{-x} = 0$ (9)

Standard Form:

$$
\frac{dy}{dx} + 4y = e^{-x}
$$

Here $P(x) = 4$, so

$$
\int P(x)dx = \int 4dx = 4x
$$

Thus an integrating factor is,

$$
\mu(x)=e^{4x}
$$

Multiplying equation (1) by $\mu(x)$ yields

$$
e^{4x}\frac{dy}{dx} + 4e^{4x}y = e^{3x}
$$

That is

$$
\frac{d}{dx}\left(e^{4x}y\right)=e^{3x}
$$

Integrate both sides and solve for *y* to find

$$
e^{4x} y = \int e^{3x} dx = \frac{1}{3} e^{3x} + C
$$

Thus

$$
y = \frac{1}{3}e^{-x} + Ce^{-4x}
$$

Substituting $x = 0$ and $y(0) = \frac{4}{3}$ gives

$$
\frac{4}{3} = \frac{1}{3}e^{0} + Ce^{0} \Rightarrow C = 1
$$

Thus the solution is

$$
y = \frac{1}{3}e^{-x} + e^{-4x}
$$

3. Text – Section 2.4

9. $(2xy+3)dx + (x^2 - 1)dy = 0$ **Solution:** Solve $(2xy + 3)dx + (x^2 - 1)dy = 0$ (10) Here $M(x, y) = 2xy + 3$ and $N(x, y) = x^2 - 1$. Because

$$
\frac{\partial M}{\partial y} = 2x = \frac{\partial N}{\partial x}
$$

equation (10) is exact.

To find $F(x, y)$, we begin by integrating M with respect to *x* :

$$
F(x, y) = \int (2xy + 3)dx = x^2y + 3x + g(y)
$$
\n(11)

Differentiating $F(x, y)$ with respect to *y* gives

 $(x, y) = N(x, y)$ $\frac{\partial F}{\partial y}(x, y) = N(x, y)$ \Rightarrow $x^2 + g'(y) = x^2 - 1$ Thus $g'(y) = -1$, we can take $g(y) = -y$. Hence, from (11), we have

$$
F(x, y) = x^2y + 3x - y
$$

The solution to equation (10) is given implicitly by

 $x^2y + 3x - y = C$ Thus we have $y = (C - 3x) / (x^2 - 1)$

15. $\cos \theta dr - (r \sin \theta - e^{\theta}) d\theta = 0$ **Solution:**

Solve $\cos \theta dr - (r \sin \theta - e^{\theta}) d\theta = 0$ (12)

This differential equation is expressed in the variable *r* and θ . Since the variables *x* and *y* are dummy variables, this equation is solved in exactly the same way as an equation in *x* and *y* . We will look for a solution with independent variable θ and dependent variable r . We see that the differential equation is expressed in the differential form

$$
M(r,\theta)dr + N(r,\theta)d\theta = 0
$$

Here $M(r, \theta) = \cos \theta$ and $N(r, \theta) = -(r \sin \theta - e^{\theta}).$ Because

$$
\frac{\partial M}{\partial \theta} = -\sin \theta = \frac{\partial N}{\partial r}
$$

equation (12) is exact.

To find $F(r, \theta)$, we begin by integrating M with respect to r :

$$
F(r,\theta) = \int \cos \theta dr = r \cos \theta + g(\theta)
$$

Next we take the partial derivative of (13)

(13)

$$
\frac{\partial F}{\partial \theta}(r,\theta) = N(r,\theta)
$$

\n
$$
\Rightarrow -r\sin\theta + g'(\theta) = -(r\sin\theta - e^{\theta})
$$

\nThus $g'(\theta) = e^{\theta}$, we can take $g(\theta) = e^{\theta}$.

Hence, from (13), we have

$$
F(r,\theta) = r\cos\theta + e^{\theta}
$$

The solution to equation (12) is given implicitly by

 $r \cos \theta + e^{\theta} = C$ Thus we have $(r = (C - e^{\theta})/\cos \theta = (C - e^{\theta})\sec \theta$

24.
$$
(e^t x + 1)dt + (e^t - 1)dx = 0
$$
, $x(1) = 1$
\n**Solution:**
\nSolve $(e^t x + 1)dt + (e^t - 1)dx = 0$ (14)
\nHere $M(t, x) = e^t x + 1$ and $N(t, x) = e^t - 1$.
\nBecause

$$
\frac{\partial M}{\partial x} = e^t = \frac{\partial N}{\partial t}
$$

equation (14) is exact.

To find $F(t, x)$, we begin by integrating M with respect to *t* :

$$
F(t,x) = \int (e^t x + 1) dt = e^t x + t + g(x)
$$
\n(15)

Next we take the partial derivative of (15)

$$
\frac{\partial F}{\partial x}(t, x) = N(t, x)
$$

\n
$$
\Rightarrow e^{t} + g'(x) = e^{t} - 1
$$

\nThus $g'(x) = -1$, we can take $g(x) = -x$.
\nHence, from (15), we have

$$
F(t, x) = e^t x + t - x
$$

The solution to equation (14) is given implicitly by

 $e^{t}x + t - x = C$

$$
\overline{a}
$$

Thus

$$
x=(C-t)/(e^t-1)
$$

We can determine the constant according the initial condition, that is,

$$
1 = (C-1)/(e-1) \Rightarrow C = e
$$

Thus we have $x = (e - t)/(e^t - 1)$

4. Find the general solution to differential equation: $xdy - (y + x^3)dx = 0$.

Solution:

Solve $xdv - (v + x^3)dx = 0$ (16) Expand *dx* term: $xdy - ydx - x^3 dx = 0$ Isolate $xdy - ydx$ terms: $(xdy - ydx) = x^3 dx$ Divide by x^2 to get form (1) from handout $xdy - ydx$

$$
\frac{-yax}{x^2} = xdx
$$
 (17)

From (1), substitute $d\left(\frac{y}{x}\right) = \frac{my}{x^2}$ *xdy ydx x* $y' = \frac{xdy-1}{2}$ $\bigg)$ $\left(\frac{y}{x}\right)$ \setminus ſ *xdx x* $d\left(\frac{y}{x}\right) =$ J $\left(\frac{y}{x}\right)$ \setminus ſ

Solve by integrating both sides

$$
\frac{y}{x} = \frac{x^2}{2} + C
$$

\n
$$
\Rightarrow \qquad y = \frac{x^3}{2} + Cx
$$