ME 201 ADVANCED CALCULUS

Assignment 4:  Chain Rule, Tangent Lines and
Tangent Planes
January 26, 2018

1. Solve the following partial derivatives:
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3. Use chain rule to solve the following partial derivatives:
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if z = sin(xy), * = 3cosv, y = 4sinv

4. Find the equation for the tangent line to the curve at the point given for the following:

(@) x = e tcost, y = e tsint, z =1t at (1,0,0)

b) 2 +y? +22=4, 22 =22 +y? at (1,1, —/2)



. Find an equation for the tangent plane to the surface at the point given for the following:

(@ x =x* —y3z at (2,—1,—2)

b) 2> +y*+2y=1 at (1,0,3)

. Verify that the curve 2 — y? + 22 = 1, xy + £z = 2 is tangent to the surface
xyz — x> — 6y + 6 = 0 at the point (1,1,1).

. Determine the following quantities:
(a) The unit tangent vector, T', for the curve of intersection of surfaces 2 + y2 + 22 = 2

and y = z at point (0,1,1).

(b) The directional derivative of f(x,y,2) = 2zxyz — x*> — 2? along the curve from
Part a) at point (0, 1,1) in the direction of increasing x.

(c) Find the angle between the gradient vector, V f, and the vector, U, along which the rate
of change (directional derivative) of f(x,y, z) atpoint (0,1, 1) is equal to 0, equal
to 1 and is a maximum.



