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Vector Fields
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Chapter 14 will examine a vector field.

For example, if we examine the temperature condi-
tions in a room, for every point P in the room, we
can assign an air temperature, 1', where

T:f(mayaz)

This is a scalar function or scalar field.

X

However, suppose air is moving around in the room and at every point P, we can assign an air

velocity vector, V(a:, Y, z), where

‘7(1’7 Yy, Z) = %u(w’ Y, z) + 5 v(a:, Y, Z) + ’% w(wa Y, z)

where the right side of the above equation consists of
x, Yy, z components at a point, with each component
being a function of (x,y, z). To describe V in the
room, we need to keep track of the 3 scalar function,
u, v, w at each f(x,y, z).

V (z, v, z) is a vector function or a vector field.




Gradient, Divergence and Curl Operations

The basic operator is the del operator given as

2D 3D

N i 50 .0
= 11— —_— _7,7 R -
ox oy oz "oy T ¥az

The del operator operates on a scalar functlon such as T f (x,y, z) or on a vector function,
suchas F = i P + _]Q + ER (force) or V =iu + _7’U + kw (velocity).

We will examine three operations is more detail

1. gradient: V operating on a scalar function

Examples include the temperature in a 2D plate, T' = f(x, y)

o 5]
vor =2, ;9
ox oy
or for a 3D volume, such as a room
.0
Bm By 0z

The physical meaning was given in Chapter 13. VT is a vector perpendicular to the T'
contours that points “uphill” on the contour plot or level surface plot.

2. divergence: V dotted with a vector function - V - 1%

We can define the velocity in a 3D room as
V(ma Y,2) = 'zu(wa Y, z) + j'v(xa Y, z) + ’%u(m9 Y, 2)

DIVERGENCEof V =divV =V .V

— — — ] - (tu v w)=—+—+ —
ox J Oy 0z J Oor Oy 0z

The DIVERGENCE of a vector is a scalar.



3. curl: the vector product of the del operator and a vector, V X Vv, produces a vector

curlof V=curlV =V x V

_ .~ 0 ~ 0 .~ 0 A N .
VXV = |t—+7—+k— x(zu—l—gv—l—kzw)
z

~| 0w Ov ~ | O0u Ow ~|0v Ou
—_— Z — — —— — — —— — — ——
oy o0z| 1 |o: oz ox Oy
—— ——

i Va2 V3

The 3D case gives
. | 0w Ov ~ | O0u Ow ~ | O0v Ou
curlV.=¢ | — — — j|— - —— k| — — —
oy 0z 0 ox Jdx Oy
—_——
\ %1 Va2 V3
The 2D case gives
. . [(0v Ou
curlV =k | — — —
ox 0Oy

4. Laplacian: (V - V) operation.

A primary example of the Laplacian operator is in determining the conduction of heat in a
solid. Given a 3D temperature field T'(x, y, z), the Laplacian is

0*T + oT N o*T — 0
ox? Oy? ox?




2D example
Consider a 2D heat flow field, g(x, y).

Look at a small differential element, AxAy. In steady state, heat flows in is equivalent to
heat flow out. Therefore

V.-g=0 (1)

But §'is related to temperature by Fourier’s law
qg=—kVT (2)

Combining (1) and (2)
V. -(=kVT)=0— VT =0

This is Laplace’s equation in 2D, which gives the steady state temperature field.

Example 4.1

Show for the 3D case f(x,y, z) that curl grad f = 0

Of .Of .Of
Vf=1— — + k—
7 Z6:1:—|_'78;y+ 0z

holds for any function f(x,y, z), for instance

f(z,y,2) =xz* +y® +ysinxe + 2°




Conservative Force Fields and the curl grad f = 0 identity

Suppose we have a conservative field F (z,y, z). We know F is irrotational, i.e.
VxF=0 (1)

(zero work in a closed path in the field)

But the identity says

always holds when ¢(x, y, ) is a scalar function.

Comparing (1) and (2) — for a Conservative Force Field, we can always find a scalar function
¢(x,y, z) such that

F=V¢

where ¢ is called the scalar potential function.

Sometimes, for convenience, we introduce a negative sign
F =—-Vu

The following statements are equivalent

F is a conservative <=> net work when a particle moves through
force field F’ around a closed path in space is zero

<— V X F = 0 irrotational
e

a scalar function ¢(x, y, z) can be found such that
F = V ¢ or a function u(x, y, z) can be found
such that F = —Vu



Line Integrals of Scalar Functions
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One place that line integrals often come up is in the computation of averages of a function.

2D Case

J

3D Case

The temperature in a room is given by T' =
f(x,y,z). Acurve C in the room is given

by x(t), y(t) and z(t). If we measure tem- //%.
perature along curve C, what is the average / t=a.

temperature T'? . (S=L)
value of f along C are length of C (S=O) y
T=_ [ f@y2) @S
= — xr z
L Jo 'Y,
line integral along C X

Calculation of the line integral along C'

f values along C

/t;f[w(t),y(t),z(t)] J <‘Z>2 o (Zi,)z . <Zj>2 y

dS along C




Example 4.2

Given a 3D temperature field

T = f(z,y,2) = 8¢ + 6xy + 30z

find the average temperature, T along a line from (0, 0, 0) to (1,1, 1).

. J

1. if we have an explicit equation for a planar curve

C: y = g(x)

we can reduce

/de to /fnc of x dx or /fnc of y dy
c

we do not have to always use the parametric equations.

2. value of / f dS depends on
c
(i) function f
(ii) curve C' in space

(i11) direction of travel

/jde:—/BAfds

3. notation - sometimes C' is a closed loop in space

CCW c W ¢

e cvaluate once around the loop
LS|l e

e ecvaluation method is the same
as the example

fE:de fE:de



Example: 4.3a

Suppose the temperature near the floor of a room (say at z = 1) is described by

22 2
T:f(a:,y):20—% where —5<xz <5
—4<y<4

What is the average temperature along the straight line path from A(0, 0) to B(4, 3).

|\ J

Example: 4.3b

What is the average room temperature along the walls of the room?

fcf(-’v, y)dS

fcds

where the closed curve C is defined in 4 sections

T =

Ci, y=—4 =t —-5<t<5
Co x=5 y=t —4<t<4
C; y=14 r=5—t 0<t<10

C, z=-5 y=8—t 0<t<8

Vs
g

Example: 4.3c

What is the average temperature around a closed circular path — 2 + y? = 9?

where C'is a closed circular path

_ f f(x,y)dS
T="£5 —— where x(t) = 3cost
¢ as
c
y(t) = 3sint
for0 < t < 2.
|\ J/




Line Integrals of Vector Functions
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Let’s examine work or energy in a force field.
W=F.d
Now consider a particle moving along a curve C'is a 3D force field.

w=[ = Fayz - 4 (1)

force value evaluated along C displacement along C

This is a line integral of the vector F along the curve C' in 3D space.

In component form:
F = iP+jQ+kR

di = idx + jdy + kdz
W = /CPda: + Qdy + Rdz (2)

Equations (1) and (2) are equivalent.

Use the equation of curve C' (either in an explicit form, i.e. y = f(x) etc., or in a parametric

e B
form) to reduce (2) to / g(t)dt or / h(x)dx etc.
t=0 r=n
Example 4.4
Given a force field in 3D:
F = i(32% — 6yx) + 7(2y + 322) + k(1 — 4zyz?)

What is the work done by Fona particle (i.e. energy added to the particle) if it moves in a
straight line from (0, 0, 0) to (1, 1, 1) through the force field.




Notes

1. If we have an explicit equation for the curve, we can sometimes reduce to a form / (fnc of z) dzx

etc. There is no need for parametric equations.

2. The work term W can be either +’ve or -’ve.
In a +’ve form, / F and / dr, are in the same direction, where the work done by the force
energy is added to the object by F.
In the -’ve form, F opposes the displacement. The energy is removed from the object.

+veW = [, F . dF

3. closed path notation

W = 7{ F . di once CCW around loop
ccw

W = F . di once CW around loop
Jew

4. A special case is the conservative force field
§F-dr=o0

We know that V X F' = 0. There is no work in a closed loop.
We also know that V¢ = F', which is integrated gives

|F-di=¢1 - ¢,

Therefore for a conservative force field, the work is a function of the end points not the path.

This is the same for any C' connecting the same 2 end points.

W is always the same number if F' is conservative.

10



Example: 4.5a

The gravitational force on a mass, m, due to mass, M, at the origin is
o Mm7r T
FZ—GTZ—K—3 where KZGMm
|71 |7

The vector field is given by:

— 5 A - Kax
F(z,y,z) =1P +3Q + kR where P = _(ZB2 +y2 + z2)3/2
Q=
(@2 + y2 + 22)3/2
= Kz

(1132 + y2 + 22)3/2

Compute the work, W, if the mass, m moves from A to B along a semi-circular path in
the (y, z) plane:

y? + 22 = 16y or z=4/16y —y? andx =0

z
curve C in the x=0 plane
m (xz plane) - circle, radius 8
From A(0,0.1,1.261) to center (0,8,0)
B(0,16,0)
A B vy
M
X

g J

Example: 4.5b

Find the work to move through the same field, but following a straight line path from
A(0,0.1,1.261) to B(0, 16, 0).

curve C

11



Conservative Force Fields
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Given a flow field in 3D space

F =i (2z2® + 6y) +7 (6 — 2yz) +k (32222 — y?)
—_—————
P Q R

Part a: Is the force field, ﬁ, conservative?

Check to see if V X F = 0 (i.e. irrotational ﬁ?)

Part b: Compute the work done on an object if it goes around a CCW circular path of radius 1
for center point P(2, 0, 3) with form

Part c: Find the scalar potential function ¢(zx, y, z)

F=V¢

Part d: Use ¢ to verify part b).

W={F.df = § Vo-dF

Parte:

Find the work done if the object moves along C' from A(0, 0, 0) to B(3, 4, —2) within F'.

12



Surface Integrals of Scalar Functions
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surface z=g(x,y)

surface areaof z = g (93 ’ y)

— surface area dS dg\? 9g\*
: S:// 1+ |— ] 4+ |=| dzdy
Ray ox Jy
y Now suppose the surface z = g(x,y) is
projection within a 3D temperature field
X dA = dx dy

T = f(z,y,2)
projection Ryy in (x,y) plane
What is the average temperature measured over the surface z = g(x, y)?

Add up T for each dS area element and divide by the total area of S to get the average.

- //Sf(a:,y,z)dS
Areaof S

The numerator is called the surface integral of f(x, y, z) over the surface S (i.e. z = g(x, y)).

To evaluate

//gfds B //Rw flz,y,9(z,y)] $1 + <gz>2 + (gi)dedy

T values on the surface

dS area element

This becomes

//RmyF(a:, y)dzdy

13



Notes

1. sometimes it is easier if we switch to polar coordinates

// F(x,y)dxzdy — // H(r,0)rdrdo
Rmy Rmy

where * = r cos 0 and y = r sin 0.

2. notation = we have a closed surface in space, i.e. a sphere surface

g(z,y) = z = \/a? — a? — y?

ffsf(w,y, 2)dS

Example: 4.6

Suppose the temperature variation (same for all (x, y)) in the atmosphere near the ground
is

2

z
T(z) =40 —

where T is in °C' and z is in m. Look at a cylindrical building roof as follows:

z
A

10 m high

30 m long

‘+———p
x/ 10m

What is the air temperature in contact with the roof?
|\

14



Surface Integrals of Vector Functions
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Given a full 3D velocity field, V(:c, Y, z) in space (i.e. air flow in a room).

Given some surface z = g(x, y) within the flow — calculate the flow rate Q (m3/s) crossing
the surface S, we can write G = z — g(x, y), where G is a constant since the surface is a level
surface or a contour.
surface z=g(x,y)
or
G(X,y,Z) =Z- g(X,y) =0

V7

The basic idea is to consider the element dS of the surface at some arbitrary (x,y, z). Then
compute the unit normal vector to dS

vG

n = (:I:)IVG|

This will vary over S. The (&) will be controlled by the direction of the flow.

The flow across dS is (V-n) ds.
———
component normal to surface

Add up over all dS elements to get the total flow across the surface

Q://Sﬁ-ﬁds

15



This is called the surface integral of the vector field V over the surface S defined by
z=g(z,y).

The actual evaluation is similar to the last example.

e V- f willend up giving some integrand function f

e project dS onto (x, y) plane
dg\? dg\?
ds = |1 — — | dzd
J " (333) " <3y> B

Q= /Rw’yf(w,y)d 14 (%) + (Z—Z)zdwdy

e then proceed as before.

Example: 4.7

Given a velocity field in 3D space
V =12z + 2) + j(z*y) + k(zz) find

a) the flow rate @ (m3/s) across the surface z = 1 for
0< x<1landO0 < y < 1inthe +’ve z direction

b) the average velocity across the surface

z

dS
1 _~surface S

16



Integral Theorems Involving Vector Functions

We will examine vector functions in 3D:

Force Field: 13”(51;, Y,z) = iP+3Q+ kR

Vector Field: 17(:1:, Y,z) = w4 Jv + kw

We have defined 2 types of integrals for such functions.

Line Integrals

/
S
/

./

X

y4

S S
— A,

S F

S

Surface Integrals

y4

/7
/

/

S

Pl

N
n

/7
N
n

Vv

v
S

/ﬁ-d?:/Pdw+Qdy+Rdz
C C

This can be interpreted as work done by F field on
an object that moves along C' within the field.

y
[[V-nas
s
This can be interpreted as the flow across surface S
y in the N direction due to the V field.

There are three theorems which state identities involving these types of integrals.

17



1. Divergence Theorem
V field in 3D space

n Also called Green’s theorem in space - this is the 2nd

; , vector form of Green’s theorem.
. closed surface S enclosing

volume v (on RHS)

y N?{SV-ﬁdS:///V(V-V)dv’

S
S

where
V = velocity field

Y = volume

2. Stokes Theorem

Also called 1st vector from of Green’s closed curve C
theorem.

>

/X// '

in 3D space
C

‘]fcﬁ-dfz/[swxﬁ)-ﬁds

where the surface S is any surface in 3D with

C as a boundary. / F defined in 3D space
3. Greens Theorem
y C

This is essentially a 2D statement of Stoke’s the-

orem, where in 2D / /
F = iP+jQ
_ k(22 7) 4

ox oy

Il

V X - X

/

F defined in 2D space

‘]{CPdHQdy://R(Zf—?;)dmdy

18



Divergence Theorem
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Trim in section 14.9 has a detailed proof of the Divergence Theorem. They try to interpret the
meaning of

fﬂwasz//vaWm2

This equation applies for any vector function V, but is used most for velocity fields in fluids. When
we consider V/, the theorem concerns net outflow to inflow (m3/s) for a region in space (like a
sphere).

The left side of the equation is a surface integral of V' over a closed surface, S in 3-D space with
7 being the outward normal to each dS.

We recall that V - AdS gives the flow rate (m3/s). When we add this up over the entire surface
(as in the LHS of the equation) we obtain the net flow rate crossing the closed surface.

Le.
net outward flow(m?/s) — net inward flow(m?®/s)

The right hand side of the equation is a calculation of V - V for each differential volume, dV
inside the surface S. We then add them all up.

For the differential volume, V

inflow (m?®/s) = wu(x)-area+ v(y)(Azx)(Az)

outflow (m?®/s) = wu(x + Az) - (Ay)(Az) +v(y + Ay)(Azx)(Az)

The net flow is then

Mw+A@—U@X+My+Aw—v@)

outflow — inflow = (Axz)(Ay)(Az) A A
x )

19



()

%_i_ay

= (V-V)dv

Therefore the RHS (V - V)dV gives the net outflow minus inflow for a volume element dV .

The integral [ | [,,, adds up the differential flow for all volume elements, dV inside of surface S.
There is a cancellation of terms because the outflow from one AV becomes the inflow to the next
volume.

When we sum over all AV, we are left with the difference between the inflow and the outflow at
the boundaries of the volume.

f]iv.ﬁds — ///V(V-V)dv

outflow — inflow(m3/s) triple sum of all outflow — inflow
across boundary surface for AY volumes inside
S of volume V in 3D space the volume V in 3D space

Example: 4.8

Given
V=i(l+a)+i1+y") +kQ+2°

verify the divergence theorem for a cube, where 0 < x,y,z < 1 i.e. show that

%fgf/'-ﬁdS:///v(V-V')dV

where
S = cube surface (closed)
Y = interior volume of the cube
|\ J

20



Stoke’s Theorem
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The formal proof is offered in Trim 14.10.

}zfcﬁ’.df://g(VxF’)-ﬁds

This has a similar meaning to Green’s theorem but now in 3D space instead of a plane.

z

F(x,y, z) is a 3D force field. The LHS of the equa-

tions is the work done when the object moves once
/ in a CCW direction along the path C' in 3D.

The RHS is the work computed over a surface inte-

/v/v C y gral [ [g.
F xS
Like Greens theorem, it works because of the interior cancellations of work, when we move around

a surface element dS inside C.

Note: the unit normal, 72 for the LHS is based on a right hand rule as follows.

any surface S in 3D
with C as the boundary

if CWonC

if CCWon C

The work on all internal surfaces cancel, leaving only the surface work in the CCW direction.

21




Example: 4.9

Given: F = ix + 32z + I?:y (a force field in 3D).
The closed path C'is given by the intersection of:
x? + y2 = 4
z = 4—x—vy
The object moves once in a CW direction around C starting at (2, 0, 2).

Verify Stoke’ theorem:

%Cﬁ-dq?://S(Vxﬁ)-ﬂds

22



Green’s Theorem
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Ya . R Q E
—»
P
The theorem involves work done on an ob-
ject by a 2D force field. The 2D force field C
is given by
F(.’D,y) = ';'P(w’ y) —|—3Q(CU, y) — X

We will examine an object that moves once CCW around a loop in F. The region inside the loop is
defined as R. The normal vector for the region R is k (outwards) to the right for a CCW motion
of C'. The theorem states

fCPda:Jery://R (Zg—g];) dzdy

The left hand side of the equation, }{ F .diin 2D dr
c

is the work done by the field F on the object as it —
moves on C. This consists of force times distance
for each d7”added up over C.

Yy

The right hand side of the equation, / / (Vx F)-
R

l%da:dy in 2D gives the direction of travel on C for y +Ay

the work given by the LHS. Maps movement of an
element Ax Ay as it moves around from A to A.

23




‘ at y+Ay
—_—

The force component times the distance for each side Q‘ l
gives the work done. at x ‘at X+AX

—

‘aty

Work = Q'atw-l—Asz_ P|aty+AyA"B_ Q|atwAy—|— PlatyAm

Qlat x+Ax Qlatz . P|at y+Ay P|aty
Azx Ay

= (AzAy) l

In the limit, the work done by F' to move the object CCW around dxdy area is

oQ oOP
— — — | dxdy
ox oy

Now we can sum up for all dedy elements inside C'.

< ’_\ﬂ

N

. A

v

_ >

(L[]

There are some cancellations (+) (-) for all interior Ax, Ay paths. Therefore when we do }1{ 7{ ,
R
we are left with the work terms on the boundaries of R.

]{CPdw—l—Qdy — //R (ZQ—‘ZD dzdy

work when we sum of all work if
move once CCW around move once CCW around all
boundary curve C (dxdy) area elements of R
inside C

24



Example: 4.10

Given a 2D force field, F(z, y) = 2(xy?) + 7(x2y) and a path C in the field:

Verify Green’s theorem

fCdeJery://R (%—'Z—ID dady

with

25



