Vector Calculus

Vector Fields

Chapter 14 will examine a vector field.

For example, if we examine the temperature conditions in a room, for every point P in the room, we can assign an air temperature, T , where

$$
T = f(x, y, z)
$$

This is a scalar function or scalar field.

However, suppose air is moving around in the room and at every point P , we can assign an air velocity vector, $\vec{V}(x, y, z)$, where

x

z

$$
\vec{V}(x,y,z)=\hat{i}\,u(x,y,z)+\hat{j}\,v(x,y,z)+\hat{k}\,w(x,y,z)
$$

where the right side of the above equation consists of x, y, z components at a point, with each component being a function of (x, y, z) . To describe \vec{V} in the room, we need to keep track of the 3 scalar function, u, v, w at each $f(x, y, z)$.

 $\vec{V}(x, y, z)$ is a vector function or a vector field.

y

 \cdot P

1

The basic operator is the del operator given as

2D

$$
\nabla = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y}
$$
\n
$$
\nabla = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}
$$

The del operator operates on a scalar function, such as $T = f(x, y, z)$ or on a vector function, such as $\vec{F} = \hat{i}P + \hat{j}Q + \hat{k}R$ (force) or $\vec{V} = \hat{i}u + \hat{j}v + \hat{k}w$ (velocity).

We will examine three operations is more detail

1. **gradient:** ∇ operating on a scalar function Examples include the temperature in a 2D plate, $T = f(x, y)$

$$
\displaystyle \boxed{\nabla T = \hat{i} \frac{\partial f}{\partial x} + \hat{j} \frac{\partial f}{\partial y}}
$$

or for a 3D volume, such as a room

$$
\nabla T = \hat{i} \frac{\partial f}{\partial x} + \hat{j} \frac{\partial f}{\partial y} + \hat{k} \frac{\partial f}{\partial z}
$$

The physical meaning was given in Chapter 13. ∇T is a vector perpendicular to the T contours that points "uphill" on the contour plot or level surface plot.

2. divergence: ∇ dotted with a vector function $\rightarrow \nabla \cdot \vec{V}$

We can define the velocity in a 3D room as

$$
\vec{V}(x,y,z)=\hat{i}u(x,y,z)+\hat{j}v(x,y,z)+\hat{k}u(x,y,z)
$$

DIVERGENCE of $\vec{V} = \text{div } \vec{V} = \nabla \cdot \vec{V}$

$$
\nabla \cdot \vec{V} = \left(\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}\right) \cdot \left(\hat{i}u + \hat{j}v + \hat{k}w\right) = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}
$$

The DIVERGENCE of a vector is a scalar.

3. curl: the vector product of the del operator and a vector, $\nabla \times \vec{V}$, produces a vector

curl of $\vec{V} = \text{curl } \vec{V} = \nabla \times \vec{V}$

$$
\nabla \times \vec{V} = \left(\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \right) \times (\hat{i}u + \hat{j}v + \hat{k}w)
$$

\n
$$
\equiv \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u & v & w \end{vmatrix}
$$

\n
$$
= \hat{i} \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right) + \hat{j} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right) + \hat{k} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)
$$

\n
$$
= \hat{i} V_1 + \hat{j} V_2 + \hat{k} V_3
$$

The 3D case gives

$$
\operatorname{curl} \vec{V} = \hat{i} \left(\underbrace{\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z}}_{V_1} \right) + \hat{j} \left(\underbrace{\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}}_{V_2} \right) + \hat{k} \left(\underbrace{\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}}_{V_3} \right)
$$

The 2D case gives

$$
\operatorname{curl} \vec{V} = \hat{k} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)
$$

4. Laplacian: $(\nabla \cdot \nabla)$ operation.

A primary example of the Laplacian operator is in determining the conduction of heat in a solid. Given a 3D temperature field $T(x, y, z)$, the Laplacian is

$$
\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial x^2} = 0
$$

2D example

Consider a 2D heat flow field, $\vec{q}(x, y)$.

Look at a small differential element, $\Delta x \Delta y$. In steady state, heat flows in is equivalent to heat flow out. Therefore

$$
\nabla \cdot \vec{q} = 0 \tag{1}
$$

But \vec{q} is related to temperature by Fourier's law

$$
\vec{q} = -k\nabla T \tag{2}
$$

Combining (1) and (2)

$$
\nabla \cdot (-k \nabla T) = 0 \rightarrow \nabla^2 T = 0
$$

This is Laplace's equation in 2D, which gives the steady state temperature field.

Example 4.1

Show for the 3D case $f(x, y, z)$ that curl grad $f = 0$

$$
\nabla f = \hat{i} \frac{\partial f}{\partial x} + \hat{j} \frac{\partial f}{\partial y} + \hat{k} \frac{\partial f}{\partial z}
$$

holds for any function $f(x, y, z)$, for instance

$$
f(x,y,z)=x^2+y^2+y\sin x+z^2
$$

Conservative Force Fields and the curl grad $f = 0$ identity

Suppose we have a conservative field $\vec{F}(x, y, z)$. We know \vec{F} is irrotational, i.e.

$$
\nabla \times \vec{F} = 0 \tag{1}
$$

(zero work in a closed path in the field)

But the identity says

$$
\nabla \times (\nabla \phi) = 0 \qquad (2)
$$

always holds when $\phi(x, y, z)$ is a scalar function.

Comparing (1) and (2) \rightarrow for a Conservative Force Field, we can always find a scalar function $\phi(x, y, z)$ such that

$$
\vec{F}=\nabla\phi
$$

where ϕ is called the scalar potential function.

Sometimes, for convenience, we introduce a negative sign

$$
\vec{F}=-\nabla u
$$

The following statements are equivalent

 $\iff \nabla \times \vec{F} = 0$ irrotational

 \iff a scalar function $\phi(x, y, z)$ can be found such that $\vec{F} = \nabla \phi$ or a function $u(x, y, z)$ can be found such that $\vec{F} = -\nabla u$

Line Integrals of Scalar Functions

One place that line integrals often come up is in the computation of averages of a function.

2D Case

3D Case

The temperature in a room is given by $T =$ $f(x, y, z)$. A curve C in the room is given by $x(t)$, $y(t)$ and $z(t)$. If we measure temperature along curve C , what is the average temperature \overline{T} ?

$$
\overline{T} = \frac{1}{L} \underbrace{\underbrace{\int_{C} f(x, y, z)}_{line \; integral \; along \; C}}_{line \; integral \; along \; C}
$$

Calculation of the line integral along C

$$
\left(\int_{t=0}^{\alpha}\underbrace{f[x(t),y(t),z(t)]}_{f \; values\; along\; C}\underbrace{\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2+\left(\frac{dz}{dt}\right)^2}}_{dS\; along\; C}\; dt\right)
$$

Example 4.2

Given a 3D temperature field

$$
T = f(x, y, z) = 8x + 6xy + 30z
$$

find the average temperature, \overline{T} along a line from $(0, 0, 0)$ to $(1, 1, 1)$.

1. if we have an explicit equation for a planar curve

$$
C: \hspace{1cm} y=g(x)
$$

we can reduce

$$
\int_C f dS \qquad \text{to} \qquad \int \text{fnc of } x \, dx \quad \text{or} \quad \int \text{fnc of } y \, dy
$$

we do not have to always use the parametric equations.

- 2. value of $\int_C f \, dS$ depends on (i) function f
	-
	- (ii) curve C in space
	- (iii) direction of travel

$$
\int_A^B f \, dS = -\int_B^A f \, dS
$$

3. notation - sometimes C is a closed loop in space

- evaluate once around the loop CCW or CW
- evaluation method is the same as the example

Example: 4.3a

Suppose the temperature near the floor of a room (say at $z = 1$) is described by

$$
T = f(x, y) = 20 - \frac{x^2 + y^2}{3} \quad \text{where} \quad -5 \le x \le 5
$$

$$
-4 \le y \le 4
$$

What is the average temperature along the straight line path from $A(0, 0)$ to $B(4, 3)$.

Example: 4.3b

What is the average room temperature along the walls of the room?

$$
\overline{T}=\frac{\oint_{C}f(x,y)dS}{\oint_{C}dS}
$$

where the closed curve C is defined in 4 sections

$$
C_1 \quad y = -4 \quad x = t \qquad -5 \le t \le 5
$$
\n
$$
C_2 \quad x = 5 \qquad y = t \qquad -4 \le t \le 4
$$
\n
$$
C_3 \quad y = 4 \qquad x = 5 - t \quad 0 \le t \le 10
$$
\n
$$
C_4 \quad x = -5 \quad y = 8 - t \quad 0 \le t \le 8
$$

Example: 4.3c

What is the average temperature around a closed circular path $\rightarrow x^2 + y^2 = 9$?

where C is a closed circular path

$$
\overline{T} = \frac{\oint_C f(x, y) dS}{\oint_C dS}
$$
 where $x(t) = 3 \cos t$
 $y(t) = 3 \sin t$

for $0 \leq t \leq 2\pi$.

Line Integrals of Vector Functions

Let's examine work or energy in a force field.

$$
W = \vec{F} \cdot \vec{d}
$$

Now consider a particle moving along a curve C is a 3D force field.

$$
W = \int_C \underbrace{\vec{F}(x, y, z)}_{force \ value \ evaluated \ along \ C} \cdot \underbrace{d\vec{r}}_{displacement \ along \ C} \tag{1}
$$

This is a line integral of the vector \vec{F} along the curve C in 3D space.

In component form:

$$
\vec{F} = \hat{i}P + \hat{j}Q + \hat{k}R
$$

\n
$$
d\vec{r} = \hat{i}dx + \hat{j}dy + \hat{k}dz
$$

\n
$$
W = \int_C Pdx + Qdy + Rdz
$$
 (2)

Equations (1) and (2) are equivalent.

Use the equation of curve C (either in an explicit form, i.e. $y = f(x)$ etc., or in a parametric form) to reduce (2) to $\int_{t=0}^{\alpha} g(t)dt$ or $\int_{x=n}^{\beta} h(x)dx$ etc.

Example 4.4

Given a force field in 3D:

$$
\vec{F} = \hat{i}(3x^2 - 6yx) + \hat{j}(2y + 3xz) + \hat{k}(1 - 4xyz^2)
$$

What is the work done by \vec{F} on a particle (i.e. energy added to the particle) if it moves in a straight line from $(0, 0, 0)$ to $(1, 1, 1)$ through the force field.

Notes

- 1. If we have an explicit equation for the curve, we can sometimes reduce to a form $\int (\text{fnc of } x) dx$ etc. There is no need for parametric equations.
- 2. The work term W can be either +'ve or -'ve. In a +'ve form, $\int \vec{F}$ and $\int d\vec{r}$, are in the same direction, where the work done by the force energy is added to the object by \vec{F} . In the -'ve form, \vec{F} opposes the displacement. The energy is removed from the object. +'ve $W = \int_C \vec{F} \cdot d\vec{r}$
- 3. closed path notation

$$
W = \oint_{CCW} \vec{F} \cdot d\vec{r}
$$
 once CCW around loop

$$
W = \oint_{CW} \vec{F} \cdot d\vec{r}
$$
 once CW around loop

4. A special case is the conservative force field

$$
\oint \vec{F} \cdot d\vec{r} = 0
$$

We know that $\nabla \times \vec{F} = 0$. There is no work in a closed loop. We also know that $\nabla \phi = \mathbf{F}$, which is integrated gives

$$
\int_C \vec{F} \cdot d\vec{r} = \phi_1 - \phi_2
$$

Therefore for a conservative force field, the work is a function of the end points not the path. This is the same for any C connecting the same 2 end points.

W is always the same number if \vec{F} is conservative.

Example: 4.5a

The gravitational force on a mass, m , due to mass, M , at the origin is

$$
\vec{F} = -G\frac{Mm\vec{r}}{|\vec{r}|^3} = -K\frac{\vec{r}}{|\vec{r}|^3}
$$
 where $K = GMm$

The vector field is given by:

$$
\vec{F}(x, y, z) = \hat{i}P + \hat{j}Q + \hat{k}R \qquad \text{where} \quad P = -\frac{Kx}{(x^2 + y^2 + z^2)^{3/2}}
$$

$$
Q = -\frac{Ky}{(x^2 + y^2 + z^2)^{3/2}}
$$

$$
R = -\frac{Kz}{(x^2 + y^2 + z^2)^{3/2}}
$$

Compute the work, W , if the mass, m moves from A to B along a semi-circular path in the (y, z) plane:

Example: 4.5b

Find the work to move through the same field, but following a straight line path from $A(0, 0.1, 1.261)$ to $B(0, 16, 0)$.

Conservative Force Fields

Given a flow field in 3D space

$$
\vec{F}=\hat{i}\underbrace{\left(2xz^3+6y\right)}_{P}+\hat{j}\underbrace{\left(6x-2yz\right)}_{Q}+\hat{k}\underbrace{\left(3x^2z^2-y^2\right)}_{R}
$$

Part a: Is the force field, \vec{F} , conservative?

Check to see if $\nabla \times \vec{F} = 0$ (i.e. irrotational \vec{F} ?)

Part b: Compute the work done on an object if it goes around a CCW circular path of radius 1 for center point $P(2, 0, 3)$ with form

Part c: Find the scalar potential function $\phi(x, y, z)$

$$
\vec{F}=\nabla\phi
$$

Part d: Use ϕ to verify part b).

$$
W=\oint \vec{F}\cdot d\vec{r}=\oint \nabla \phi \cdot d\vec{r}
$$

Part e:

Find the work done if the object moves along C from $A(0, 0, 0)$ to $B(3, 4, -2)$ within \vec{F} .

Surface Integrals of Scalar Functions

What is the average temperature measured over the surface $z = g(x, y)$?

Add up T for each dS area element and divide by the total area of S to get the average.

$$
\overline{T} = \frac{\int \! \int_S \! f(x,y,z) dS}{Area \ of \ S}
$$

The numerator is called the surface integral of $f(x, y, z)$ over the surface S (i.e. $z = g(x, y)$). To evaluate

$$
\int\!\int_S\!f dS=\int\!\!\int_{{\cal R}_{xy}}\underbrace{f[x,y,g(x,y)]}_{T\ values\ on\ the\ surface}\underbrace{\sqrt{1+\left(\frac{\partial g}{\partial x}\right)^2+\left(\frac{\partial g}{\partial y}\right)^2}}_{dS\ area\ element}dxdy
$$

This becomes

$$
\int\!\int_{{\cal R}_{xy}}\!F(x,y)dxdy
$$

Notes

1. sometimes it is easier if we switch to polar coordinates

$$
\int\int_{\mathcal{R}_{xy}} F(x,y)dxdy \qquad \to \qquad \int\int_{\mathcal{R}_{xy}} H(r,\theta) r dr d\theta
$$

where $x = r \cos \theta$ and $y = r \sin \theta$.

2. notation = we have a closed surface in space, i.e. a sphere surface

$$
g(x,y) \to z = \sqrt{a^2 - x^2 - y^2}
$$

$$
\oint \oint_S f(x,y,z)dS
$$

Example: 4.6

Suppose the temperature variation (same for all (x, y)) in the atmosphere near the ground is

$$
T(z)=40-\frac{z^2}{5}
$$

where T is in \mathcal{C} and z is in m. Look at a cylindrical building roof as follows:

What is the air temperature in contact with the roof?

Surface Integrals of Vector Functions

Given a full 3D velocity field, $\vec{V}(x, y, z)$ in space (i.e. air flow in a room).

Given some surface $z = g(x, y)$ within the flow \rightarrow calculate the flow rate $Q(m^3/s)$ crossing the surface S, we can write $G = z - g(x, y)$, where G is a constant since the surface is a level surface or a contour.

The basic idea is to consider the element dS of the surface at some arbitrary (x, y, z) . Then compute the unit normal vector to dS

$$
\hat{n}=(\pm)\frac{\nabla G}{|\nabla G|}
$$

This will vary over S. The (\pm) will be controlled by the direction of the flow.

The flow across dS is $(\vec{V} \cdot \hat{n})$ ${\overline{z}}$ component normal to surface dS.

Add up over all dS elements to get the total flow across the surface

$$
Q = \int\!\int_S \vec{V} \cdot \hat{n} \, dS
$$

This is called the surface integral of the vector field \vec{V} over the surface S defined by $z = g(x, y)$.

The actual evaluation is similar to the last example.

- $\vec{V} \cdot \hat{n}$ will end up giving some integrand function f
- project dS onto (x, y) plane

$$
dS=\sqrt{1+\left(\frac{\partial g}{\partial x}\right)^2+\left(\frac{\partial g}{\partial y}\right)^2}dxdy
$$

$$
Q=\int\!\int_{{\cal R}_{x,y}}\!f(x,y)\sqrt{1+\left(\frac{\partial g}{\partial x}\right)^2+\left(\frac{\partial g}{\partial y}\right)^2}dxdy
$$

• then proceed as before.

Example: 4.7

Given a velocity field in 3D space

$$
\vec{V} = \hat{i}(2x+z) + \hat{j}(x^2y) + \hat{k}(xz)
$$
 find

- a) the flow rate $Q(m^3/s)$ across the surface $z = 1$ for $0 \le x \le 1$ and $0 \le y \le 1$ in the +'ve z direction
- b) the average velocity across the surface

Integral Theorems Involving Vector Functions

We will examine vector functions in 3D:

Force Field: $\vec{F}(x, y, z) = \hat{i}P + \hat{j}Q + \hat{k}R$

Vector Field: $\vec{V}(x, y, z) = \hat{i}u + \hat{j}v + \hat{k}w$

We have defined 2 types of integrals for such functions.

Line Integrals

$$
\int_{C}\vec{F}\cdot d\vec{r}=\int_{C}Pdx+Qdy+Rdz
$$

This can be interpreted as work done by \vec{F} field on an object that moves along C within the field.

Surface Integrals

$$
\int\!\!\int_S \vec{V}\cdot\hat{n}\;dS
$$

This can be interpreted as the flow across surface S in the \hat{n} direction due to the \vec{V} field.

There are three theorems which state identities involving these types of integrals.

1. Divergence Theorem

where

 $\vec{V}~=~$ velocity field

$$
v = \text{volume}
$$

2. Stokes Theorem

Also called 1st vector from of Green's theorem.

$$
\oint_C \vec{F} \cdot d\vec{r} = \int \int_S (\nabla \times \vec{F}) \cdot \hat{n} dS
$$

where the surface S is any surface in 3D with C as a boundary.

3. Greens Theorem

This is essentially a 2D statement of Stoke's theorem, where in 2D

$$
\vec{F} = \hat{i}P + \hat{j}Q
$$

$$
\nabla \times \vec{F} = \hat{k} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)
$$

Also called Green's theorem in space - this is the 2nd vector form of Green's theorem.

$$
\oint \oint_S \vec{V} \cdot \vec{n} \, dS = \int \int \int_{\mathcal{V}} (\nabla \cdot \vec{V}) d\mathcal{V}
$$

$$
\oint_C Pdx + Qdy = \int \int_{\mathcal{R}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy
$$

Divergence Theorem

Trim in section 14.9 has a detailed proof of the Divergence Theorem. They try to interpret the meaning of

$$
\oint \oint_S \vec{V} \cdot \hat{n} dS = \int \int \int_{\mathcal{V}} (\nabla \cdot \vec{V}) dV
$$

This equation applies for any vector function \vec{V} , but is used most for velocity fields in fluids. When we consider \vec{V} , the theorem concerns net outflow to inflow (m^3/s) for a region in space (like a sphere).

The left side of the equation is a surface integral of V over a closed surface, S in 3-D space with \hat{n} being the outward normal to each dS .

We recall that $\vec{V} \cdot \hat{n} dS$ gives the flow rate (m^3/s) . When we add this up over the entire surface (as in the LHS of the equation) we obtain the net flow rate crossing the closed surface.

i.e.

net outward flow (m^3/s) – net inward flow (m^3/s)

The right hand side of the equation is a calculation of $\nabla \cdot \vec{V}$ for each differential volume, dV inside the surface S . We then add them all up.

For the differential volume, \mathcal{V}

$$
\text{inflow } (m^3/s) = u(x) \cdot \text{area} + v(y)(\Delta x)(\Delta z)
$$
\n
$$
\text{outflow } (m^3/s) = u(x + \Delta x) \cdot (\Delta y)(\Delta z) + v(y + \Delta y)(\Delta x)(\Delta z)
$$

The net flow is then

outflow - inflow =
$$
(\Delta x)(\Delta y)(\Delta z)\left[\frac{u(x + \Delta x) - u(x)}{\Delta x} + \frac{v(y + \Delta y) - v(y)}{\Delta y}\right]
$$

$$
= (dV)\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)
$$

$$
= (\nabla \cdot \vec{V})dV
$$

Therefore the RHS $(\nabla \cdot \vec{V})dV$ gives the net outflow minus inflow for a volume element dV .

The integral $\int \int \int_{\mathcal{V}}$, adds up the differential flow for all volume elements, $d\mathcal{V}$ inside of surface S . There is a cancellation of terms because the outflow from one ΔV becomes the inflow to the next volume.

When we sum over all ΔV , we are left with the difference between the inflow and the outflow at the boundaries of the volume.

$$
\oint \oint_{S} \vec{V} \cdot \vec{n} dS = \int \int \int_{\mathcal{V}} (\nabla \cdot \vec{V}) d\mathcal{V}
$$

outflow - inflow (m^{3}/s) triple sum of all outflow - inflow
across boundary surface for $\Delta \mathcal{V}$ volumes inside
S of volume *V* in 3D space the volume *V* in 3D space

Example: 4.8

Given

$$
\vec{V} = \hat{i}(1+x) + \hat{j}(1+y^2) + \hat{k}(1+z^3)
$$

verify the divergence theorem for a cube, where $0 \le x, y, z \le 1$ i.e. show that

$$
\oint \oint_S \vec{V} \cdot \hat{n} dS = \int \int \int_{\mathcal{V}} (\nabla \cdot \vec{V}) dV
$$

where

 $S =$ cube surface (closed)

 $v =$ interior volume of the cube

Stoke's Theorem

The formal proof is offered in Trim 14.10.

$$
\oint_C \vec{F} \cdot d\vec{r} = \int \int_S (\nabla \times \vec{F}) \cdot \hat{n} dS
$$

This has a similar meaning to Green's theorem but now in 3D space instead of a plane.

 $\vec{F}(x, y, z)$ is a 3D force field. The LHS of the equations is the work done when the object moves once in a CCW direction along the path C in 3D. The RHS is the work computed over a surface integral $\int \int_{\mathbf{S}}$.

Like Greens theorem, it works because of the interior cancellations of work, when we move around a surface element dS inside C .

Note: the unit normal, \hat{n} for the LHS is based on a right hand rule as follows.

The work on all internal surfaces cancel, leaving only the surface work in the CCW direction.

Example: 4.9

Given: $\vec{F} = \hat{i}x + \hat{j}2z + \hat{k}y$ (a force field in 3D).

The closed path C is given by the intersection of:

$$
x2 + y2 = 4
$$

$$
z = 4 - x - y
$$

The object moves once in a CW direction around C starting at $(2, 0, 2)$.

Verify Stoke' theorem:

$$
\oint_C \vec{F} \cdot d\vec{r} = \int \int_S (\nabla \times \vec{F}) \cdot \hat{n} \ dS
$$

Green's Theorem

The theorem involves work done on an object by a 2D force field. The 2D force field is given by

$$
F(x,y)=\hat{i}P(x,y)+\hat{j}Q(x,y)
$$

We will examine an object that moves once CCW around a loop in \vec{F} . The region inside the loop is defined as $\mathcal R$. The normal vector for the region $\mathcal R$ is $\hat k$ (outwards) to the right for a CCW motion of C . The theorem states

$$
\oint_C Pdx + Qdy = \int \int_{\mathcal{R}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy
$$

The **left hand side** of the equation, $\oint_C \vec{F} \cdot d\vec{r}$ in 2D is the work done by the field \vec{F} on the object as it moves on C . This consists of force times distance for each $d\vec{r}$ added up over C .

The **right hand side** of the equation, $\int \int_{\mathcal{R}} (\nabla \times \vec{F}) \cdot$ $\hat{k}dxdy$ in 2D gives the direction of travel on C for the work given by the LHS. Maps movement of an element $\Delta x \Delta y$ as it moves around from A to A.

$$
Work = Q|_{at x + \Delta x} \Delta y - P|_{at y + \Delta y} \Delta x - Q|_{at x} \Delta y + P|_{at y} \Delta x
$$

$$
= (\Delta x \Delta y) \left[\frac{Q|_{at x + \Delta x} - Q|_{at x}}{\Delta x} - \frac{P|_{at y + \Delta y} - P|_{at y}}{\Delta y} \right]
$$

In the limit, the work done by \vec{F} to move the object CCW around $dxdy$ area is

$$
\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)dxdy
$$

gives the work done.

Now we can sum up for all $dxdy$ elements inside C .

There are some cancellations (+) (-) for all interior Δx , Δy paths. Therefore when we do $\oint \oint_{\mathcal{R}}$, we are left with the work terms on the boundaries of \mathcal{R} .

$$
\oint_C Pdx + Qdy = \int \int_{\mathcal{R}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy
$$

work when we sum of all work if

move once CCW around move once CCW around all

boundary curve C (dxdy) area elements of R

inside C

Example: 4.10

Given a 2D force field, $\vec{F}(x,y) = \hat{i}(xy^3) + \hat{j}(x^2y)$ and a path C in the field:

Verify Green's theorem

$$
\oint_C Pdx + Qdy = \int \int_{\mathcal{R}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy
$$

with

$$
P = xy^3
$$

$$
Q = x^2y
$$