
Vector Calculus

Vector Fields

Reading
Trim 14.1−→ Vector Fields

Assignment
web page−→ assignment #9

Chapter 14 will examine a vector field.

For example, if we examine the temperature condi-
tions in a room, for every point P in the room, we
can assign an air temperature, T , where

T = f(x, y, z)

This is a scalar function or scalar field.
x

y

z

P

However, suppose air is moving around in the room and at every point P , we can assign an air
velocity vector, ~V (x, y, z), where

~V (x, y, z) = î u(x, y, z) + ĵ v(x, y, z) + k̂ w(x, y, z)

where the right side of the above equation consists of
x, y, z components at a point, with each component
being a function of (x, y, z). To describe ~V in the
room, we need to keep track of the 3 scalar function,
u, v, w at each f(x, y, z).

~V (x, y, z) is a vector function or a vector field.
x

y

z
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Gradient, Divergence and Curl Operations

The basic operator is the del operator given as

2D

∇ = î
∂

∂x
+ ĵ

∂

∂y

3D

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

The del operator operates on a scalar function, such as T = f(x, y, z) or on a vector function,
such as ~F = îP + ĵQ+ k̂R (force) or ~V = îu+ ĵv + k̂w (velocity).

We will examine three operations is more detail

1. gradient:∇ operating on a scalar function

Examples include the temperature in a 2D plate, T = f(x, y)

∇T = î
∂f

∂x
+ ĵ

∂f

∂y

or for a 3D volume, such as a room

∇T = î
∂f

∂x
+ ĵ

∂f

∂y
+ k̂

∂f

∂z

The physical meaning was given in Chapter 13. ∇T is a vector perpendicular to the T
contours that points “uphill” on the contour plot or level surface plot.

2. divergence:∇ dotted with a vector function→ ∇ · ~V
We can define the velocity in a 3D room as

~V (x, y, z) = îu(x, y, z) + ĵv(x, y, z) + k̂u(x, y, z)

DIVERGENCE of ~V = div ~V = ∇ · ~V

∇ · ~V =

(
î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)
·
(̂
iu+ ĵv + k̂w

)
=
∂u

∂x
+
∂v

∂y
+
∂w

∂z

The DIVERGENCE of a vector is a scalar.
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3. curl: the vector product of the del operator and a vector,∇× ~V , produces a vector

curl of ~V = curl ~V = ∇× ~V

∇× ~V =

(
î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)
×
(̂
iu+ ĵv + k̂w

)

≡

∣∣∣∣∣∣∣∣∣
î ĵ k̂
∂

∂x

∂

∂y

∂

∂z
u v w

∣∣∣∣∣∣∣∣∣

= î

∂w∂y − ∂v

∂z︸ ︷︷ ︸
V1

 + ĵ

∂u∂z − ∂w

∂x︸ ︷︷ ︸
V2

 + k̂

∂v∂x − ∂u

∂y︸ ︷︷ ︸
V3


= î V1 + ĵ V2 + k̂ V3

The 3D case gives

curl ~V = î

∂w∂y − ∂v

∂z︸ ︷︷ ︸
V1

 + ĵ

∂u∂z − ∂w

∂x︸ ︷︷ ︸
V2

 + k̂

∂v∂x − ∂u

∂y︸ ︷︷ ︸
V3



The 2D case gives

curl ~V = k̂

(
∂v

∂x
−
∂u

∂y

)

4. Laplacian: (∇ · ∇) operation.

A primary example of the Laplacian operator is in determining the conduction of heat in a
solid. Given a 3D temperature field T (x, y, z), the Laplacian is

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂x2
= 0
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2D example

Consider a 2D heat flow field, ~q(x, y).

Look at a small differential element, ∆x∆y. In steady state, heat flows in is equivalent to
heat flow out. Therefore

∇ · ~q = 0 (1)

But ~q is related to temperature by Fourier’s law

~q = −k∇T (2)

Combining (1) and (2)

∇ · (−k∇T ) = 0→ ∇2T = 0

This is Laplace’s equation in 2D, which gives the steady state temperature field.

Example 4.1

Show for the 3D case f(x, y, z) that curl grad f = 0

∇f = î
∂f

∂x
+ ĵ

∂f

∂y
+ k̂

∂f

∂z

holds for any function f(x, y, z), for instance

f(x, y, z) = x2 + y2 + y sinx+ z2
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Conservative Force Fields and the curl grad f = 0 identity

Suppose we have a conservative field ~F (x, y, z). We know ~F is irrotational, i.e.

∇× ~F = 0 (1)

(zero work in a closed path in the field)

But the identity says

∇× (∇φ) = 0 (2)

always holds when φ(x, y, z) is a scalar function.

Comparing (1) and (2)→ for a Conservative Force Field, we can always find a scalar function
φ(x, y, z) such that

~F = ∇φ

where φ is called the scalar potential function.

Sometimes, for convenience, we introduce a negative sign

~F = −∇u

The following statements are equivalent

~F is a conservative ⇐⇒ net work when a particle moves through
force field ~F around a closed path in space is zero

⇐⇒ ∇× ~F = 0 irrotational

⇐⇒ a scalar function φ(x, y, z) can be found such that
~F = ∇φ or a function u(x, y, z) can be found
such that ~F = −∇u
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Line Integrals of Scalar Functions

Reading
Trim 14.2−→ Line Integrals

Assignment
web page−→ assignment #10

One place that line integrals often come up is in the computation of averages of a function.

2D Case

x

2

2

f

L

f =
1

L

∫ L
x=0

f(x)dx

3D Case

The temperature in a room is given by T =
f(x, y, z). A curve C in the room is given
by x(t), y(t) and z(t). If we measure tem-
perature along curve C, what is the average
temperature T ?

T =
1

L

value of f along C︷ ︸︸ ︷∫
C
f(x, y, z)

arc length of C︷︸︸︷
dS︸ ︷︷ ︸

line integral along C

L

x

y

z

t=0
(S=0)

(S=L)
t=

Calculation of the line integral along C

∫ α
t=0

f [x(t), y(t), z(t)]︸ ︷︷ ︸
f values along C

√√√√(dx
dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

︸ ︷︷ ︸
dS along C

dt
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Example 4.2

Given a 3D temperature field

T = f(x, y, z) = 8x+ 6xy + 30z

find the average temperature, T along a line from (0, 0, 0) to (1, 1, 1).

1. if we have an explicit equation for a planar curve

C : y = g(x)

we can reduce∫
C
fdS to

∫
fnc of x dx or

∫
fnc of y dy

we do not have to always use the parametric equations.

2. value of
∫
C
f dS depends on

(i) function f

(ii) curve C in space

(iii) direction of travel

∫ B
A
f dS = −

∫ A
B
f dS

3. notation - sometimes C is a closed loop in space

CCW
CWC C

f dS f dS
c c

• evaluate once around the loop
CCW or CW

• evaluation method is the same
as the example
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Example: 4.3a

Suppose the temperature near the floor of a room (say at z = 1) is described by

T = f(x, y) = 20−
x2 + y2

3
where −5 ≤ x ≤ 5

−4 ≤ y ≤ 4

What is the average temperature along the straight line path fromA(0, 0) toB(4, 3).

Example: 4.3b

What is the average room temperature along the walls of the room?

T =

∮
C
f(x, y)dS∮
C
dS

where the closed curve C is defined in 4 sections

C1 y = −4 x = t −5 ≤ t ≤ 5

C2 x = 5 y = t −4 ≤ t ≤ 4

C3 y = 4 x = 5− t 0 ≤ t ≤ 10

C4 x = −5 y = 8− t 0 ≤ t ≤ 8

Example: 4.3c

What is the average temperature around a closed circular path→ x2 + y2 = 9?

where C is a closed circular path

T =

∮
C
f(x, y)dS∮
C
dS

where x(t) = 3 cos t

y(t) = 3 sin t

for 0 ≤ t ≤ 2π.
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Line Integrals of Vector Functions

Reading
Trim 14.3−→ Line Integrals Involving Vector Functions

14.4−→ Independence of Path

Assignment
web page−→ assignment #10

Let’s examine work or energy in a force field.

W = ~F · ~d

Now consider a particle moving along a curve C is a 3D force field.

W =
∫
C

~F (x, y, z)︸ ︷︷ ︸
force value evaluated along C

· d~r︸︷︷︸
displacement along C

(1)

This is a line integral of the vector ~F along the curve C in 3D space.

In component form:

~F = îP + ĵQ+ k̂R

d~r = îdx+ ĵdy + k̂dz

W =
∫
C
Pdx+Qdy +Rdz (2)

Equations (1) and (2) are equivalent.

Use the equation of curve C (either in an explicit form, i.e. y = f(x) etc., or in a parametric

form) to reduce (2) to
∫ α
t=0
g(t)dt or

∫ β
x=n

h(x)dx etc.

Example 4.4

Given a force field in 3D:

~F = î(3x2 − 6yx) + ĵ(2y + 3xz) + k̂(1− 4xyz2)

What is the work done by ~F on a particle (i.e. energy added to the particle) if it moves in a
straight line from (0, 0, 0) to (1, 1, 1) through the force field.
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Notes

1. If we have an explicit equation for the curve, we can sometimes reduce to a form
∫

(fnc of x) dx

etc. There is no need for parametric equations.

2. The work termW can be either +’ve or -’ve.

In a +’ve form,
∫
~F and

∫
d~r, are in the same direction, where the work done by the force

energy is added to the object by ~F .

In the -’ve form, ~F opposes the displacement. The energy is removed from the object.

+’veW =
∫
C
~F · d~r

3. closed path notation

W =
∮
CCW

~F · d~r once CCW around loop

W =
∮
CW

~F · d~r once CW around loop

4. A special case is the conservative force field

∮
~F · d~r = 0

We know that∇× ~F = 0. There is no work in a closed loop.

We also know that∇φ = F , which is integrated gives

∫
C

~F · d~r = φ1 − φ2

Therefore for a conservative force field, the work is a function of the end points not the path.

This is the same for any C connecting the same 2 end points.

W is always the same number if ~F is conservative.

10



Example: 4.5a

The gravitational force on a mass,m, due to mass,M , at the origin is

~F = −G
Mm~r

|~r|3
= −K

~r

|~r|3
where K = GMm

The vector field is given by:

~F (x, y, z) = îP + ĵQ+ k̂R where P = −
Kx

(x2 + y2 + z2)3/2

Q = −
Ky

(x2 + y2 + z2)3/2

R = −
Kz

(x2 + y2 + z2)3/2

Compute the work, W , if the mass, m moves from A to B along a semi-circular path in
the (y, z) plane:

y2 + z2 = 16y or z =
√

16y − y2 and x = 0

From A(0, 0.1, 1.261) to
B(0, 16, 0)

A B

x

y

M

z

m

curve C in the x=0 plane

(xz plane) - circle, radius 8

center (0,8,0)

Example: 4.5b

Find the work to move through the same field, but following a straight line path from
A(0, 0.1, 1.261) toB(0, 16, 0).

A

B

x

y

M

z
m curve C
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Conservative Force Fields

Reading
Trim 14.5−→ Energy and Conservative Force Fields

Assignment
web page−→ assignment #10

Given a flow field in 3D space

~F = î (2xz3 + 6y)︸ ︷︷ ︸
P

+ĵ (6x− 2yz)︸ ︷︷ ︸
Q

+k̂ (3x2z2 − y2)︸ ︷︷ ︸
R

Part a: Is the force field, ~F , conservative?

Check to see if∇× ~F = 0 (i.e. irrotational ~F ?)

Part b: Compute the work done on an object if it goes around a CCW circular path of radius 1
for center point P (2, 0, 3) with form

Part c: Find the scalar potential function φ(x, y, z)

~F = ∇φ

Part d: Use φ to verify part b).

W =
∮
~F · d~r =

∮
∇φ · d~r

Part e:

Find the work done if the object moves along C fromA(0, 0, 0) toB(3, 4,−2) within ~F .
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Surface Integrals of Scalar Functions

Reading
Trim 14.7−→ Surface Integrals

Assignment
web page−→ assignment #11

x

y

z
surface z=g(x,y)

surface area dS

dA = dx dy
projection

xyprojection         in (x,y) plane

surface area of z = g(x, y)

S =
∫ ∫
Rxy

√√√√1 +

(
∂g

∂x

)2

+

(
∂g

∂y

)2

dxdy

Now suppose the surface z = g(x, y) is
within a 3D temperature field

T = f(x, y, z)

What is the average temperature measured over the surface z = g(x, y)?

Add up T for each dS area element and divide by the total area of S to get the average.

T =

∫ ∫
S
f(x, y, z)dS

Area of S

The numerator is called the surface integral of f(x, y, z) over the surface S (i.e. z = g(x, y)).

To evaluate

∫ ∫
S
fdS =

∫ ∫
Rxy

f [x, y, g(x, y)]︸ ︷︷ ︸
T values on the surface

√√√√1 +

(
∂g

∂x

)2

+

(
∂g

∂y

)2

dxdy︸ ︷︷ ︸
dS area element

This becomes

∫ ∫
Rxy

F (x, y)dxdy
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Notes

1. sometimes it is easier if we switch to polar coordinates

∫ ∫
Rxy

F (x, y)dxdy →
∫ ∫
Rxy

H(r, θ)rdrdθ

where x = r cos θ and y = r sin θ.

2. notation = we have a closed surface in space, i.e. a sphere surface

g(x, y)→ z =
√
a2 − x2 − y2

∮ ∮
S
f(x, y, z)dS

Example: 4.6

Suppose the temperature variation (same for all (x, y)) in the atmosphere near the ground
is

T (z) = 40−
z2

5

where T is in ◦C and z is inm. Look at a cylindrical building roof as follows:

x

z

30 m long

10 m high

10 m

What is the air temperature in contact with the roof?
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Surface Integrals of Vector Functions

Reading
Trim 14.8−→ Surface Integrals Involving Vector Fields

Assignment
web page−→ assignment #11

Given a full 3D velocity field, ~V (x, y, z) in space (i.e. air flow in a room).

Given some surface z = g(x, y) within the flow→ calculate the flow rate Q (m3/s) crossing
the surface S, we can write G = z − g(x, y), where G is a constant since the surface is a level
surface or a contour.

dS at (x,y,z)

surface z=g(x,y)

or

G(x,y,z) = z - g(x,y) = 0

V

The basic idea is to consider the element dS of the surface at some arbitrary (x, y, z). Then
compute the unit normal vector to dS

n̂ = (±)
∇G
|∇G|

This will vary over S. The (±) will be controlled by the direction of the flow.

The flow across dS is (~V · n̂)︸ ︷︷ ︸
component normal to surface

dS.

Add up over all dS elements to get the total flow across the surface

Q =
∫ ∫

S

~V · n̂ dS
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This is called the surface integral of the vector field ~V over the surface S defined by
z = g(x, y).

The actual evaluation is similar to the last example.

• ~V · n̂ will end up giving some integrand function f

• project dS onto (x, y) plane

dS =

√√√√1 +

(
∂g

∂x

)2

+

(
∂g

∂y

)2

dxdy

Q =
∫ ∫
Rx,y

f(x, y)

√√√√1 +

(
∂g

∂x

)2

+

(
∂g

∂y

)2

dxdy

• then proceed as before.

Example: 4.7

Given a velocity field in 3D space

~V = î(2x+ z) + ĵ(x2y) + k̂(xz) find

a) the flow rateQ (m3/s) across the surface z = 1 for
0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 in the +’ve z direction

b) the average velocity across the surface

z

x

y

1

1

1

xy

dS
surface S
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Integral Theorems Involving Vector Functions

We will examine vector functions in 3D:

Force Field: ~F (x, y, z) = îP + ĵQ+ k̂R

Vector Field: ~V (x, y, z) = îu+ ĵv + k̂w

We have defined 2 types of integrals for such functions.

Line Integrals

z

y

x

C

F

∫
C

~F · d~r =
∫
C
Pdx+Qdy +Rdz

This can be interpreted as work done by ~F field on
an object that moves along C within the field.

Surface Integrals

z

y

x

S

V

∫ ∫
S

~V · n̂ dS

This can be interpreted as the flow across surface S
in the n̂ direction due to the ~V field.

There are three theorems which state identities involving these types of integrals.
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1. Divergence Theorem

z

y

x

V field in 3D space

closed surface S enclosing

volume      (on RHS)

Also called Green’s theorem in space - this is the 2nd
vector form of Green’s theorem.

∮ ∮
S

~V · ~n dS =
∫ ∫ ∫

V
(∇ · ~V )dV

where

~V = velocity field

V = volume

2. Stokes Theorem
Also called 1st vector from of Green’s
theorem.

∮
C

~F · d~r =
∫ ∫

S
(∇× ~F ) · n̂ dS

where the surface S is any surface in 3D with
C as a boundary.

x

y

z

C

F defined in 3D space

closed curve C

in 3D space

3. Greens Theorem

This is essentially a 2D statement of Stoke’s the-
orem, where in 2D

~F = îP + ĵQ

∇× ~F = k̂

(
∂Q

∂x
−
∂P

∂y

)
x

y
C

F defined in 2D space

∮
C
Pdx+Qdy =

∫ ∫
R

(
∂Q

∂x
−
∂P

∂y

)
dxdy
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Divergence Theorem

Reading
Trim 14.9−→ The Divergence Theorem

Assignment
web page−→ assignment #11

Trim in section 14.9 has a detailed proof of the Divergence Theorem. They try to interpret the
meaning of

∮ ∮
S

~V · n̂dS =
∫ ∫ ∫

V
(∇ · ~V )dV

This equation applies for any vector function ~V , but is used most for velocity fields in fluids. When
we consider ~V , the theorem concerns net outflow to inflow (m3/s) for a region in space (like a
sphere).

The left side of the equation is a surface integral of V over a closed surface, S in 3-D space with
n̂ being the outward normal to each dS.

We recall that ~V · n̂dS gives the flow rate (m3/s). When we add this up over the entire surface
(as in the LHS of the equation) we obtain the net flow rate crossing the closed surface.

i.e.

net outward flow(m3/s)− net inward flow(m3/s)

The right hand side of the equation is a calculation of ∇ · ~V for each differential volume, dV
inside the surface S. We then add them all up.

For the differential volume, V

inflow (m3/s) = u(x) · area+ v(y)(∆x)(∆z)

outflow (m3/s) = u(x+ ∆x) · (∆y)(∆z) + v(y + ∆y)(∆x)(∆z)

The net flow is then

outflow − inflow = (∆x)(∆y)(∆z)

[
u(x+ ∆x)− u(x)

∆x
+
v(y + ∆y)− v(y)

∆y

]
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= (dV)

(
∂u

∂x
+
∂v

∂y

)

= (∇ · ~V )dV

Therefore the RHS (∇ · ~V )dV gives the net outflow minus inflow for a volume element dV .

The integral
∫ ∫ ∫

V , adds up the differential flow for all volume elements, dV inside of surface S.
There is a cancellation of terms because the outflow from one ∆V becomes the inflow to the next
volume.

When we sum over all ∆V , we are left with the difference between the inflow and the outflow at
the boundaries of the volume.

∮ ∮
S

~V · ~ndS =
∫ ∫ ∫

V
(∇ · ~V )dV

outflow − inflow(m3/s) triple sum of all outflow − inflow

across boundary surface for ∆V volumes inside

S of volume V in 3D space the volume V in 3D space

Example: 4.8

Given

~V = î(1 + x) + ĵ(1 + y2) + k̂(1 + z3)

verify the divergence theorem for a cube, where 0 ≤ x, y, z ≤ 1 i.e. show that∮ ∮
S

~V · n̂dS =
∫ ∫ ∫

V
(∇ · ~V )dV

where

S = cube surface (closed)
V = interior volume of the cube
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Stoke’s Theorem

Reading
Trim 14.10−→ Stoke’s Theorem

Assignment
web page−→ assignment #11

The formal proof is offered in Trim 14.10.

∮
C

~F · d~r =
∫ ∫

S
(∇× ~F ) · n̂ dS

This has a similar meaning to Green’s theorem but now in 3D space instead of a plane.

x

y

z

C

F

~F (x, y, z) is a 3D force field. The LHS of the equa-
tions is the work done when the object moves once
in a CCW direction along the path C in 3D.
The RHS is the work computed over a surface inte-
gral

∫ ∫
S .

Like Greens theorem, it works because of the interior cancellations of work, when we move around
a surface element dS inside C.

Note: the unit normal, n̂ for the LHS is based on a right hand rule as follows.

dS

dS

dS

n

n

n

C

any surface S in 3D

with C as the boundary

if CCW on C

if CW on C

^

^

^

The work on all internal surfaces cancel, leaving only the surface work in the CCW direction.
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Example: 4.9

Given: ~F = îx+ ĵ2z + k̂y (a force field in 3D).

The closed path C is given by the intersection of:

x2 + y2 = 4

z = 4− x− y

The object moves once in a CW direction around C starting at (2, 0, 2).

Verify Stoke’ theorem:∮
C

~F · d~r =
∫ ∫

S
(∇× ~F ) · n̂ dS
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Green’s Theorem

Reading
Trim 14.6−→ Green’s Theorem

Assignment
web page−→ assignment #10

The theorem involves work done on an ob-
ject by a 2D force field. The 2D force field
is given by

F (x, y) = îP (x, y) + ĵQ(x, y) x

y

P

Q F

C

We will examine an object that moves once CCW around a loop in ~F . The region inside the loop is
defined asR. The normal vector for the regionR is k̂ (outwards) to the right for a CCW motion
of C. The theorem states

∮
C
Pdx+Qdy =

∫ ∫
R

(
∂Q

∂x
−
∂P

∂y

)
dxdy

The left hand side of the equation,
∮
C

~F · d~r in 2D

is the work done by the field ~F on the object as it
moves on C. This consists of force times distance
for each d~r added up over C.

F

dr

The right hand side of the equation,
∫ ∫
R

(∇× ~F )·

k̂dxdy in 2D gives the direction of travel on C for
the work given by the LHS. Maps movement of an
element ∆x∆y as it moves around fromA toA.

x

y

P

Q F

x x +   x

y +   y

y A

k
^

out
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The force component times the distance for each side
gives the work done. Q

P

Q

P

at x+  x

at y+  y

at x

at y

A

Work = Q|at x+∆x ∆y − P |at y+∆y ∆x− Q|at x ∆y + P |at y ∆x

= (∆x∆y)

[
Q|at x+∆x − Q|at x

∆x
−
P |at y+∆y − P |at y

∆y

]

In the limit, the work done by ~F to move the object CCW around dxdy area is

(
∂Q

∂x
−
∂P

∂y

)
dxdy

Now we can sum up for all dxdy elements inside C.

There are some cancellations (+) (-) for all interior ∆x,∆y paths. Therefore when we do
∮ ∮
R

,
we are left with the work terms on the boundaries ofR.

∮
C
Pdx+Qdy =

∫ ∫
R

(
∂Q

∂x
−
∂P

∂y

)
dxdy

work when we sum of all work if

move once CCW around move once CCW around all

boundary curve C (dxdy) area elements of R

inside C
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Example: 4.10

Given a 2D force field, ~F (x, y) = î(xy3) + ĵ(x2y) and a path C in the field:

Verify Green’s theorem

∮
C
Pdx+Qdy =

∫ ∫
R

(
∂Q

∂x
−
∂P

∂y

)
dxdy

with

P = xy3

Q = x2y
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