
Multiple Integrals

Review of Single Integrals

Reading
Trim 7.1−→ Review Application of Integrals: Area

7.2−→ Review Application of Integrals: Volumes
7.3−→ Review Application of Integrals: Lengths of Curves

Assignment
web page−→

Planar Area

In the limit as ∆x→ dx the total number of panels→∞

A =
∫ b

a
y · dx =

∫ b

a
f(x)dx

Volume of Solid of Revolution

a) Disk Method : rotate y = f(x) about the
x− axis to form a solid.

y

x
a b

y=f(x)

rotate around

x-axis

x

The disk has a volume of V = πy2∆x.

The total volume between a and b can be de-
termined as:

V =
∫ b

a
πy2dx

Note: The value of y = f(x) is substituted
into the formulation for area and the resulting
equation is integrated between a and b.
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b) Shell Method: Find a ring defined with ring area: 2πy · ∆y.

The volume of the ring is given by

∆V = (2πy ·∆y)∆x

The volume of the solid is determined by
solving the integral

V =
∫ R

0
2π x y dy

Either method can be used, which ever is
most convenient.

y

x
a b

y=f(x)

rotate around

x-axis

x

y

R

Surface Area of Solid of Revolution

y

x
a b

y

y=f(x)

arc length

rotate around

x-axis

x

s

• the arc length can be defined using
Eq. 7.15:

∆s =

√√√√1 +

(
dy

dx

)2

∆x

=

√
dx2 + dy2

dx
∆x

• rotate about the x− axis, where the
surface area is defined as

∆Asurf = 2πy∆s

• the total surface area is given as

Asurface =
∫ b

a
2πy

√√√√1 +

(
dy

dx

)2

dx

Example: 3.1

Find the area in the positive quadrant bounded by

y =
1

4
x and y = x3
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Example: 3.2

Find the volume of a cone with base radius R and height h, rotated about the x axis using
the disk method.

y y

z

x

x

y
R

h

Example: 3.3

Find the volume of a cone with base radius R and height h, rotated about the x axis using
the shell method.

y

z

x

y

y

ring

Example: 3.4

Find the surface area of a cone with base radiusR and height h, rotated about the x axis.

y y

y

z

x

x

As

x

s

s

y=R-R x
h
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Double Integrals

Reading
Trim 13.1−→ Double Integrals and Double Iterated Integrals

13.2−→ Eval. of Double Integrals by Double Iterated Integrals
13.7−→ Double Iterated Integrals in Polar Coordinates

Assignment
web page−→ assignment #7

Cartesian Coordinates

Find the area in the +’ve quadrant

bounded by y =
1

4
x and y = x3.

The basic area element in 2D is

∆A = ∆x ·∆y

We can build this area up into a strip by
summing over ∆y, keeping x fixed.

1/8

1/2
x

y
y=x

y = 1/4 x

y

x

3

A at arbitrary (x, y)

region -

∆Astrip =

1/4x∑
y=x3

∆y


fixed x

∆x

Sum up all ∆x strips to get the total area

A =
1/2∑
x=0

1/4x∑
y=x3

∆y

∆x

In the limit as ∆x→ dx and ∆y → dy we get a double integral as follows

A =
∫ 1/2

x=0

(∫ 1/4x

y=x3
dy

)
dx
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Polar Coordinates

In Cartesian coordinates our area element was ∆A = ∆x∆y, which in differential form gave us

r

r

r

x

y

A = r   r

A =
∫ ∫
R
dxdy

We can change the principal coordinates into polar
coordinates by transforming x and y into r and θ.

r =
√
x2 + y2

θ = tan−1(y/x)

The Polar coordinate area element becomes

∆A = r∆r∆θ

when integrated becomes

A =
∫ ∫
R
rdrdθ

Example: 3.6

Find the area in the +’ve quadrant bounded by 2 circles

1

1-1 0 2

area A to be

found -

x2 + y2 = 1

(x− 1)2 + y2 = 1
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Surface Areas from Double Integrals

Reading
Trim 13.3−→ Areas and Volumes of Solids of Revolution

13.6−→ Surface Area

Assignment
web page−→ assignment #7

area element

A =   x   y  in

surface  z = f(x,y)

surface area element

S

projection

in (x, y) plane

x

y

z

xy

A

n

k

S
^

^

How is ∆S related to ∆A? Imagine shining a light vertically down through ∆S to get ∆A.

1. the surface is defined as z = f(x, y)

2. redefine as F = z − f(x, y) where the surface is given as F = 0
- F > 0 and F < 0 will the regions above and below the surface, respectively

3. the gradient of the function F is given as

∇F =

(
−
∂f

∂x
,−
∂f

∂y
, 1

)

∇F is the perpendicular to the surface and the perpendicular to the tangent planes

~n = ∇F
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4. get the unit normal vector as follows

n̂ =
∇F
|∇F |

=

−î
∂f

∂x
− ĵ

∂f

∂y
+ k̂√√√√(∂f

∂x

)2

+

(
∂f

∂y

)2

+ 1

5. find the component of the ∆S surface projected onto k̂

from Trim 12.5 we know that

∆A = cos θ∆S

Note, when θ = 0 ⇒ ∆A = ∆S (this is the surface parallel to the xy plane.

n

n

k

k

S

A

In general,

∆A = cos θ︸ ︷︷ ︸
n̂·k̂

∆S

n̂ · k̂ = |n̂||k̂| cos θ = cos θ

∆A = ∆S(n̂ · k̂) = ∆S
1

|∇F |

since n̂ · k̂ produces a numerator of k̂ · k̂ = 1 and a denominator of |∇F |

Rearranging the above equation, we can solve for ∆S. In the limit

dS =

√√√√1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

︸ ︷︷ ︸
|∇F |

dxdy︸ ︷︷ ︸
dA

Given the surface z = f(x, y), the surface area is

S =
∫ ∫
Rxy

√√√√1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

dxdy

whereRxy is the projection of the f(x, y) surface down onto the (x, y) plane.

While this is the most common form of the equation, we could also find S by projecting onto
another coordinate plane. Sometimes it is more convenient to do it this way. See Trim 14.6 for
applicable equations.
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Example: 3.7

Find the surface area in the +’ve octant for z = f(x, y) = 4− x− 2y.

x

y

4

4

2

plane

y = 2-x/2

xy

Example: 3.8

Given the sphere, x2 + y2 + z2 = a2, derive the formula for surface area.

Example: 3.9

Find the volume formed in the +’ve octant between the coordinate planes and the surface

z = f(x, y) = 4− x− 2y

x

y

4

4

2

plane

y = 2-x/2

xy
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Example: 3.10a

Find the mean value of y = f(x) = sinx in the domain x = 0 to x = π.

Example: 3.10b

Find the mean value of temperature for T = f(x, y) = 4− x− 2y.

x

y

4

2

T of plate at (x,y)

= f(x,y)

plate  x=0, y=0, y=2-x/2

Example: 3.10c

Derive the formula for the volume of revolution. for the following sphere:

x2 + y2 + z2 = a2.

x

y

z

x  + y  = a

x=0

y=0

region

surface  z = f(x,y)

a

a

a

2 2 2

xy
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Triple Integrals

Reading
Trim 13.8−→ Triple Integrals and Triple Iterated Integrals

13.9−→ Volumes

Assignment
web page−→ assignment #8

Volume Calculations in Cartesian Coordinates

The triple integral can be identified as

∫ ∫ ∫
V

dx dy dz︸ ︷︷ ︸
dV − volume element

or
∫ ∫ ∫

V
f dx dy dz

add up the dV elements in x, y, z directions, i.e. a triple sum.

Consider the solid defined by x2 + z2 = 4 in the positive octant. Find the volume of this solid
between the coordinate planes and the plane y + z = 6.

x

y

z

plane y + z = 6

2

2

6

6

x  +  z  =  4

cylinder x  + z   = 42

2

2

2

volume    to be found
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Start with a volume element at arbitrary
(x, y, z) in space inside dV

dV = dx dy dz

Build up a column - sum over y keeping
x, z constant.

y=0 y = 6-z

sum over dy

column volume =
(∫ 6−z

y=0
dy
)
dxdz

Build up a slice - sum columns over z, keeping y, x
fixed.

sum

column

over

dz

slice volume =

∫ √4−x2

z=0

(∫ 6−z

y=0
dy
)
dz

 dx
Finally sum the slices over x

V =
∫ 2

0

∫ √4−x2

0

∫ 6−z

0
dydzdx

Evaluation of the integral gives

V =
∫ 2

0

∫ √4−x2

0
(6− z)dzdx =

∫ 2

0
6
√

4− x2 −
(
√

4− x2)2

2
dx

= 6
∫ 2

0

√
4− x2dx−

1

2

∫ 2

0
(4− x2)dx = 6π −

8

3
≈ 16.18 use tables if necessary

Example: 3.11

Find the volume of the paraboloid, z = x2 + y2 for 0 ≤ z ≤ 4. Consider only the +’ve
octant, i.e. 1/4 of the volume.

x

y

z

x sum

2

2

4
z = x  +  y   surface2 2

2 2

projection onto (x,y) plane

x   +   y   = 4
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Volume Calculations in Cylindrical and Spherical Coordinates

Reading
Trim 13.11−→ Triple Iterated Integrals in Cylindrical Coordinates

13.12−→ Triple Iterated Integrals in Spherical Coordinates

Assignment
web page−→ assignment #8

Cylindrical Coordinates

point: P (r, θ, z) i.e. polar in x, y plane plus z

volume element: dV = r dr dθ dz

based on links to Cartesian coordinates

r =
√
x2 + y2

θ = tan−1(y/x)

z = z

or
x = r cos θ

y = r sin θ

z = z

where 0 ≤ r, z ≤ ∞ and 0 ≤ θ ≤ 2π

Typically we build up column, wedge slice and then the total volume, given as
∫ ∫ ∫

rdrdθdz

The math operations are easier when we have axi-symmetric systems, i.e. cylinders and cones

Spherical Coordinates

rr sinf

f

f

dr

dA

r sin   d

rd

f f

dV = dA x dr

= r sin   dr d   d
2

point: P (r, θ, φ)

volume element: dV = (r sinφdφ)︸ ︷︷ ︸
height

rdrdθ︸ ︷︷ ︸
area

based on links to Cartesian coordinates
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r =
√
x2 + y2 + z2

θ = tan−1(y/x)

φ = cos−1

(
z

√
x2 + y2 + z2

) or
x = r sinφ cos θ

y = r sinφ sin θ

z = r cosφ

where 0 ≤ r ≤ ∞; 0 ≤ θ ≤ 2π; 0 ≤ φ ≤ π. Note: for 0 ≤ φ ≤ π the sinφ is always +’ve
for dV +’ve.

The solution procedure involves building up columns, slices as before to obtain the total volume,
given as

∫ ∫ ∫
r2 sin φ dr dθ dφ

Example: 3.12

Find the volume bounded by a cylinder,

x2 + y2 = a2

and a paraboloid,

z = x2 + y2

z

y

x

z = x + y
2 2

x + y = a
2 2 2

a
a

Spherical Coordinate Example

Example: 3.13

Derive a formula for the volume of a sphere with radius, a

x2 + y2 + z2 = a2
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Moments of Area/ Mass / Volume

Reading
Trim 13.5−→ Centres of Mass and Moments of Inertia

13.10−→ Centres of Mass and Moments of Inertia

Assignment
web page−→ assignment #9

Centroids, Centers of Mass etc.

2-D case: thin plate of constant thickness

Sometimes, single integrals work, as in a 2-D case, where the thickness is given as t and is constant
or a function of position as t(x, y). The material density is given as ρ (kg/m3), again constant
or a function of position as ρ(x, y). We sometimes use the mass per unit area of the plate, ρ∗ =
ρ · t (kg/m2).

area mass

basic element dA = dx dy dM = ρ t dx dy or ρ∗ dx dy

total area A =
∫ ∫
R dx dy M =

∫ ∫
R dM =

∫ ∫
R ρ t dx dy

first moment of area first moment of mass
(weight by distance from axis)

about y− axis x dA = x dx dy x dM = xρ t dx dy

total Fy =
∫ ∫
R x dA

∫ ∫
R x dM

about x− axis Fx =
∫ ∫
R y dA

∫ ∫
R y dM

centroid coordinates center of mass coordinates

x =

∫ ∫
R x dA

A
xc =

∫ ∫
R x dM

M

y =

∫ ∫
R y dA

A
yc =

∫ ∫
R ydM

M

second moments ∫ ∫
R x

2 dA
∫ ∫
R x

2 dM∫ ∫
R y

2 dA
∫ ∫
R y

2 dM
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3-D case:

We use the same basic ideas but the basic element is now V = dxdydz

2-D Objects

x

y
region

plate of thickness t

area element dA
volume is t dA

mass is   (x,y) t dA

Quantities of interest in applications such as dynamics.
Area: A =

∫ ∫
R dA (V olume = tA)

Mass: M =
∫ ∫
R ρ(x, y)tdA

where ρ(x, y) = density of material in (kg/m3)
at point (x, y)

Centroid = “geometrical center” of object

x =

∫ ∫
R xdA

A

1st moment of area
about y− axis

y =

∫ ∫
R ydA

A

1st moment of area
about x− axis

Center of Mass: useful in dynamics
problems

xc =

∫ ∫
R xdm

M
=

∫ ∫
R xρ(x, y)tdA

M

yc =

∫ ∫
R ydm

M
=

∫ ∫
R yρ(x, y)tdA

M

Note: that if the object density is uniform, then the cen-
troid and center of mass are the same.

2nd Moments of Area and Mass:
−→Moments of Inertia
2nd moment of area about: y − axis
Iy =

∫ ∫
R x

2dA
2nd moment of mass about: y − axis
Iy =

∫ ∫
R x

2ρ(x, y)tdA
(similar formulas for Ix about the x− axis)

3-D Objects

volume

d    at arbitrary (x,y,z)

mass is    (x,y,z) d

projection onto (x,y) plane defines xyx

y

z
V

V

V

Quantities of interest in applications such as dynamics.
Volume: V =

∫ ∫ ∫
V dV

Mass: M =
∫ ∫ ∫

V ρ(x, y, z)dV
where ρ(x, y, z) = density of material in
(kg/m3) at point (x, y, z)

Centroid = “geometrical center” of object

x =

∫ ∫ ∫
V xdV
V

1st moment of volume
about y − z plane

y =

∫ ∫ ∫
V ydV
V

1st moment of volume
about x− z plane

z =

∫ ∫ ∫
V zdV
V

1st moment of volume
about x− y plane

Center of Mass: useful in dynamics
problems

xc =

∫ ∫ ∫
V xρ(x, y, z)dV

M

similar formulas for yc and zc

2nd Moments of Area and Mass:
−→ Polar Moments of Inertia
volume moment about: y − axis
Jy =

∫ ∫ ∫
V(x

2 + z2)dV
mass moment about: y − axis
Jy =

∫ ∫ ∫
V(x

2 + z2)ρ(x, y, z)dV
(similar formulas for Jx about the x− axis)

and

(similar formulas for Jz about the z − axis)
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Example: 3.14

Find the centroid, center of mass and the 1st moment of mass for a quarter circle of radius
a with an inner circle of radius a/2 made of lead with a density of ρ1 = 11, 000 kg/m3

and an outer circle of radius amade aluminum with a density of ρ2 = 2, 500 kg/m3. The
thickness is uniform throughout at t = 10mm.

x

y

a

a

a/2

a/2

x  + y  = a2 2 2

1

2 ρ∗1 = 11 g/cm2 = 110 kg/m2

ρ∗2 = 2.5 g/cm2 = 25 kg/m2

Example: 3.15

Find the area of the paraboloid z = x2 + y2 below the plane z = 1

Example: 3.16

Find the moment of inertia about the y− axis of the area enclosed by the cardioid
r = a(1− cos θ)

Example: 3.17

Find the center of gravity of a homogeneous solid hemisphere of radius a
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