Multiple Integrals

Review of Single Integrals

Reading

Assignment
web page —>

Trim 7.1 —  Review Application of Integrals: Area
7.2 —  Review Application of Integrals: Volumes
7.3 — Review Application of Integrals: Lengths of Curves

Planar Area

In the limit as Axz — dx the total number of panels — oo

A = /aby . d:c:/:f(a:)da:

Volume of Solid of Revolution

a) Disk Method : rotate y = f(x) about the
o — axis to form a solid.

y=f(x)

rotate around

m X-axis
X

a b

The disk has a volume of V = my?Ax.

The total volume between a and b can be de-
termined as:

b
\% =/ my’dz

a

Note: The value of y = f(x) is substituted
into the formulation for area and the resulting
equation is integrated between a and b.




b) Shell Method: Find a ring defined with ring area: 27wy - Auy.

The volume of the ring is given by

y
AV = 27y - Ay)Ax
. . y=f(x)
The volume of the solid is determined by :
solving the integral ! ﬂ
= b X
‘ Y = / 2w x y dy .
0 rotate around
Ay X-axis
Either method can be used, which ever is
most convenient.
Surface Area of Solid of Revolution
e the arc length can be defined using
y Eq. 7.15:
dy 2
As = 1+ | — ]| Ax
arc length dr
AS
y . rotate around = ————— Az
! dx
m X-axis
X e rotate about the x— axis, where the
a b L surface area is defined as
AX AAgury = 2myAs

e the total surface area is given as

b dy 2
Asurfacez/ 27y, |1 + E dx

Find the area in the positive quadrant bounded by

Yy=—-x and y==x




Example: 3.2

Find the volume of a cone with base radius R and height h, rotated about the x axis using

the disk method.
y
" &
S
z AX
Example: 3.3

Find the volume of a cone with base radius R and height h, rotated about the & axis using
the shell method.

ring

Example: 3.4

Find the surface area of a cone with base radius R and height h, rotated about the x axis.

y=R-B x

y el

.,‘ .




Double Integrals

Reading
Trim 13.1 —
132 —
13.7 —
Assignment
web page —>

Double Integrals and Double Iterated Integrals
Eval. of Double Integrals by Double Iterated Integrals
Double Iterated Integrals in Polar Coordinates

assignment #7

Cartesian Coordinates

Find the area in the +’ve quadrant

1
bounded by y = 2 and y = x3.
The basic area element in 2D is
AA=Ax Ay

We can build this area up into a strip by
summing over Ay, keeping x fixed.

1/4x

A143157"12;) - ( Z Ay) Ax
fized x

y=x3

Sum up all A strips to get the total area

1/2 [1/4=
A= Z Z Ay| Az
=0 y=:1:3

A A at arbitrary (x, y)

Ya y=x
/8 y=1/4x
region - ‘R
Vs e
Ax 1 X

In the limit as Ax — dx and Ay — dy we get a double integral as follows

1/2 1/4x
A= / ( / dy) dz
z=0 y=x3




Polar Coordinates

In Cartesian coordinates our area element was A A = Ax Ay, which in differential form gave us

y A:// dxdy
A R

. We can change the principal coordinates into polar
AA =rArAY \ A8 coordinates by transforming « and y into = and 6.

r =z +y?

0 = tan~(y/x)

The Polar coordinate area element becomes

\4

AA=1rArA@

when integrated becomes

A= / /errdﬁ

Example: 3.6
Find the area in the +’ve quadrant bounded by 2 circles
area A to be
R
1 found -
-1 \/1
e’ +y* =1
(x—1)°+9y* = 1
|\ J/




Surface Areas from Double Integrals

Reading
Trim 13.3 —  Areas and Volumes of Solids of Revolution
13.6 —  Surface Area

Assignment
web page —  assignment #7

surface area element
A
S

surface z =f(x,y)

AS

projection R xy

in (x, y) plane
AA

How is AS related to A A? Imagine shining a light vertically down through AS to get A A.
1. the surface is defined as z = f(x,y)

2. redefine as F' = z — f(x, y) where the surface is given as F' = 0
- F > 0and F < 0 will the regions above and below the surface, respectively

3. the gradient of the function F' is given as

VF = <_6fa _g7 1>
ox 0Oy

V F is the perpendicular to the surface and the perpendicular to the tangent planes

n=VF



4. get the unit normal vector as follows

'ﬁ,: =
|VF| of\> [0f\?
(o) + ()

5. find the component of the A S surface projected onto k

from Trim 12.5 we know that
AA =cosOAS

Note, when® = 0 = AA = AS (this is the surface parallel to the xy plane.

In general,

A

A
0 n AA =cosOAS
—
Ak
AS . )
/r} e n - k = |n||k| cos @ = cos 0
A

A
k1
A

x >

A 1
AA=AS(h-k)=AS——
|VF|

since 7 - k produces a numerator of k - k = 1 and a denominator of |V F|

Rearranging the above equation, we can solve for AS. In the limit

ds = |1 ZAN of 2dd
- () (e

dA

|V F|

Given the surface z = f(x, y), the surface area is

= o (5] + (5 oo

where R, is the projection of the f(x, y) surface down onto the (x, y) plane.

While this is the most common form of the equation, we could also find S by projecting onto
another coordinate plane. Sometimes it is more convenient to do it this way. See Trim 14.6 for
applicable equations.



Example: 3.7

Find the surface area in the +’ve octant for z = f(x,y) =4 — ¢ — 2y.

Example: 3.8

Given the sphere, 2 + y2 + 22 = a2, derive the formula for surface area.

Example: 3.9

Find the volume formed in the +’ve octant between the coordinate planes and the surface

z:f(:z:,y)=4—m—2y




Example: 3.10a

Find the mean value of y = f(x) = sin « in the domainx = 0to x = .

Example: 3.10b

Find the mean value of temperature for T' = f(x,y) =4 — x — 2y.

T of plate at (x,y)
=f(x,y)

plate x=0, y=0, y=2-x/2

Example: 3.10c

Derive the formula for the volume of revolution. for the following sphere:

2 + y? + 22 = a’.

surface z =f(x,y)

region Ry




Triple Integrals

Reading
Trim 13.8 —  Triple Integrals and Triple Iterated Integrals
13.9 —  Volumes

Assignment
web page —>  assignment #8

Volume Calculations in Cartesian Coordinates

The triple integral can be identified as

///v dz dy dz or ///vfdacdydz

dV — volume element

add up the dV elements in x, y, z directions, i.e. a triple sum.

Consider the solid defined by 2 + 22 = 4 in the positive octant. Find the volume of this solid
between the coordinate planes and the plane y 4+ z = 6.

z
A

volumeV to be found

cylinder x2+ z2 = 4

planey +z =6

10



Start with a volume element at arbitrary
(x,y, 2) in space inside dV

dV = dx dy dz

Build up a column - sum over y keeping
x, z constant.

y=0 y=6-z
~

-y
sum over dy

6—=
column volume = < / dy) dxdz

Evaluation of the integral gives

Build up a slice - sum columns over z, keeping y,
fixed.

sum 4}

column

over
dz

=0 y:O

Vv 4—x? 6—=
slice volume = [ / ( dy) dz| dx
Finally sum the slices over «

2 ry/4—22 6—2
Y = / / / dydzdx
0 Jo 0

y = /02/0@(6—z)dzdw:/026\/4—:c2—%dm

2 1 2 8
— 6/\/4— 2d ——/ 4— 2?)dx = 67 — — ~ 16.18 tables if
: xr2dzx 5 0( x”)dx Fis 3 use tables if necessary

Example: 3.11

octant, i.e. 1/4 of the volume.

Find the volume of the paraboloid, z = 2 + y? for 0 < z < 4. Consider only the +’ve

z =x2%+ y2 surface

x/ X sum

>y

projection onto (x,y) plane
2 2
X +y =4

11



Volume Calculations in Cylindrical and Spherical Coordinates

Reading
Trim 13.11 —  Triple Iterated Integrals in Cylindrical Coordinates
13.12 —  Triple Iterated Integrals in Spherical Coordinates

Assignment
web page —>  assignment #8

Cylindrical Coordinates
point: P(r,0,z) iec. polar in x, y plane plus z
volume element: dV = r dr d6 dz

based on links to Cartesian coordinates

r o= (/a2 + y2 x = rcosb

or
0 = tan'(y/x) y = rsinf

z = z z = z
where 0 < r,z < ocand 0 < 0 < 27
Typically we build up column, wedge slice and then the total volume, given as [ [ [ rdrdfdz

The math operations are easier when we have axi-symmetric systems, i.e. cylinders and cones

Spherical Coordinates

rsing de
point: P(r,0,¢)
rsing <r ----- a0 volume element: dV = (r sin ¢d¢) rdrdf
¢ dr T area
5 based on links to Cartesian coordinates
dV=dAxdr

=r’sind dr d¢ de

12



r = \/m2+y2—|-z2

x = rsin¢cosf
— -1 or
(7] tan™ " (y/x) y = rsin¢sind
¢ = COos \/132 + y2 + 2 2= Teos ¢

where 0 < r < 00;0 <0 <27m;0 < ¢ < . Note: for 0 < ¢ < 7 the sing is always +’ve
for dV +’ve.

The solution procedure involves building up columns, slices as before to obtain the total volume,
given as

[///7'2 sinqbdrdadqb}

Example: 3.12

y4 2 2

Find the volume bounded by a cylinder,
m2 _|_ y2 — a2

and a paraboloid,

z:m2+y2

Spherical Coordinate Example

Example: 3.13

Derive a formula for the volume of a sphere with radius, a

w2+y2+z2=a2

13



Moments of Area/ Mass / Volume

Reading
Trim 13.5 —»
13.10 —

Assignment
web page —>

Centres of Mass and Moments of Inertia
Centres of Mass and Moments of Inertia

assignment #9

Centroids, Centers of Mass etc.

2-D case: thin plate of constant thickness

Sometimes, single integrals work, as in a 2-D case, where the thickness is given as ¢ and is constant

or a function of position as t(x, y). The
or a function of position as p(x,y). We

p -t (kg/m?).

area

material density is given as p (kg/m?), again constant
sometimes use the mass per unit area of the plate, p* =

mass

basic element dA = dx dy

total area A= [[,dedy

first moment of area

dM = ptdxdyorp*drdy

M=|[[,dM = [ [, ptdzdy

first moment of mass

about y— axis
total Fy=[[gxdA

about z— axis F, = [ [ ydA

centroid coordinates

xdA = xdxdy

(weight by distance from axis)
rdM = xptdrdy

[ Jr®dM

[ JrydM

center of mass coordinates

— Ik fR rdA
A
7= S JrydA
A
second moments
[ Jr @ dA
/ fR y* dA

_ fwadM
= —R—

Tc

¥ = J Jr ydM
N M

[ Jg x?dM

[ Jry? dM

14




3-D case:

We use the same basic ideas but the basic element is now V = dxdydz

2-D Objects

y plate of thickness t
A .
region R

area element dAX
volume is t dA

mass is P(x,y) t dA

Quantities of interest in applications such as dynamics.
Area: A = [ [, dA (Volume = tA)

Mass: M = [ [ p(x,y)tdA
where p(z,y) = density of material in (kg/m?3)

at point (x, y)

Centroid = “geometrical center” of object

i fR xdA 1st moment of area

T = A about y— axis
[ Jr ydA 1st moment of area
Y= RT about x — axis

Center of Mass: useful in dynamics

problems

= — J Jr zdm _ [ Jr zp(x, y)tdA
c M M

—_ JJrydm _ | Jryp(z,y)tdA

Ye M M

Note: that if the object density is uniform, then the cen-
troid and center of mass are the same.

2nd Moments of Area and Mass:

—— Moments of Inertia

2nd moment of area about: y — axis

I, = [ [, x2dA

2nd moment of mass about: y — axis

I, = ff'R z?p(x,y)tdA

(similar formulas for I, about the & — axs)

3-D Objects

volume V

z dV at arbitrary (x,y,z)

projection onto (x,y) plane defines Ry

mass is P(x,y,z) dV

Quantities of interest in applications such as dynamics.

Volume: V = [ [ [|,dV

Mass: M = [ [ [,, p(x,y,2)dV
where p(x,y, z) =  density of material

(kg/m?) at point (z, y, =)

Centroid = “geometrical center” of object

] J,zdv

1st moment of volume

T = v about y — z plane
dy 1st moment of volume
y= M about © — z plane
\%
[ [ [, zdv 1st moment of volume
z= + about & — vy plane

Center of Mass: useful in dynamics
problems

7= = fff\; zp(z,y,z)dV
c M

similar formulas for y,. and z.

2nd Moments of Area and Mass:
— Polar Moments of Inertia
volume moment about: y — axis
Jy = [ [ [, (@ + 2%)dV

mass moment about: y — axis

Jy = f f fv(wz + zz)p(a:,y, z)dV
(similar formulas for J, about the x — axis)

and

(similar formulas for .J, about the z — axis)

in

15




Example: 3.14

Find the centroid, center of mass and the 1st moment of mass for a quarter circle of radius

a with an inner circle of radius a /2 made of lead with a density of p; = 11,000 kg/m3

and an outer circle of radius @ made aluminum with a density of po = 2,500 kg/m?3. The

thickness is uniform throughout at ¢ = 10 mm.

yA 5
a - x°+y?=a?

a/2 Py pi = 11g/em® =110 kg/m*

P, ps = 2.5g/em? = 25 kg/m?
a2 a X
|\ J

Example: 3.15

Find the area of the paraboloid z = x? + y? below the plane z = 1

Example: 3.16

Find the moment of inertia about the y— axis of the area enclosed by the cardioid
r = a(l — cos )

Example: 3.17

Find the center of gravity of a homogeneous solid hemisphere of radius a

16



