
Differential Calculus of Multivariable Functions

Introduction to Multivariable Functions

Reading
Trim 12.1−→ Multivariable Functions

12.2−→ Limits and Continuity

Assignment
web page−→ assignment #3

Functions of Two Independent Variables

If z is uniquely determined when the values of x and y are given, we say that z is a single-valued
function of x and y and indicate this fact by the notation

z = f(x, y)

Many engineering applications exist that show this functional dependence, for instance the vibra-
tion of a string or the temperature of a plate or a cooling fin

T = f(x, y)

It is sometimes useful to visualize the function graphically. The function z = f(x, y) can be
visualized in two different ways:

1. a contour plot

2. a surface plot
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Partial Derivatives

Reading
Trim 12.3−→ Partial Derivatives

12.5−→ Higher Order Partial Derivatives

Assignment
web page−→ assignment #4

For y = f(x) there is only one slope at any point P ,
where the slope of the tangent at P is

slope =
dy

dx

∣∣∣∣∣
x=x0

= lim
∆x→0

f(x0 + ∆x)− f(x0)

∆x

∣∣∣∣∣
at x=x0

y

P

xxo

x

y=f(x)

However for a 3-dimensional surface, z = f(x, y), the slope varies depending on the direction
you move on the surface.

For z(x, y) = 20e

(
−x2/100

)
cos

πy

30
find the slope at P (x = 5, y = 10)
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Different notations of the partial derivative can be used.

∂f

∂x
or fx

∂f

∂y
or fy

Higher Orders

∂2f

∂x2
or fxx

∂2f

∂y2
or fyy

∂2f

∂x∂y
or fyx = fxy

←− order of calculation −→ order of calculation

Higher Order Partial Derivatives

Partial derivatives of the second order are denoted as

∂2f

∂x2
,

∂2f

∂y2
,

∂2f

∂x∂y
,

∂2f

∂y∂x

where

∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
,

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)

as so on.

If the function z = f(x, y) together with the partial derivatives fx, fy, fxy and fyx are continu-
ous, then

∂

∂x

(
∂f

∂y

)
=

∂

∂y

(
∂f

∂x

)
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Chain Rule for Partial Derivatives

Reading
Trim 12.6−→ Chain Rules for Partial Derivatives

Assignment
web page−→ assignment #4

Review of Single Variable Functions

• if we understand for 1 variable, it is easy to understand for 2 or 3 variables

• the changes are straight forward

dy

dx
=
dy

du
·
du

dx

Using the tree we need to remember⇒

y
|
u
|
x

LHS →
dy

dx
→ implies we are looking at the function y(x)

RHS →
dy

du
→ implies we are looking at the same y but now the independent variable is u,

i.e. y(u).

The chain rule relates slopes of the 2 plots

dy(x)

dx︸ ︷︷ ︸
slope @ any point x

=
dy(u)

du︸ ︷︷ ︸
limu→0

y(u+∆u)−y(u)
∆u

×
du(x)

dx︸ ︷︷ ︸
the effect of a change of scale
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Chain Rule for Multivariable Functions

1. Given a dependent variable as a function of several independent variables, transform the
dependent variable into a new set of independent variables:

z︸︷︷︸
dependent

→ independent︷ ︸︸ ︷
(u, v) −→ z(x, y)

You will typically be asked to find

∂z

∂x
,
∂2z

∂x2
,
∂z

∂y
,
∂2z

∂y2

2. map the dependency of the dependent variable in terms of the independent variables, in our
case, z(u, v)

z
/ \

u v

3. map the dependency of the independent variables in the transformed space in our case,
u(x, y) and v(x, y)

z
/ \

u v
/ \ / \

x y x y

4. use the chain rule to form all paths from z → x and z → y

∂z

∂x
=

∂z

∂u

∂u

∂x
+
∂z

∂v

∂v

∂x

∂z

∂y
=

∂z

∂u

∂u

∂y
+
∂z

∂v

∂v

∂y

5. How do we find the 2nd derivative?

• remember
∂2z

∂x2
=

∂

∂x

(
∂z

∂x

)
︸ ︷︷ ︸

we already know how to do this
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• replace z at the top of the tree with
∂z

∂x

∂z/∂x
/ \

u v
/ \ / \

x y x y

• find all paths between ∂z/∂x

• remember, we may need to do the same for y if asked

∂2z

∂x2
=

[
∂

∂u

(
∂z

∂x

)]
∂u

∂x
+

[
∂

∂v

(
∂z

∂x

)]
∂v

∂x

∂2z

∂y2
=

[
∂

∂u

(
∂z

∂y

)]
∂u

∂y
+

[
∂

∂v

(
∂z

∂y

)]
∂v

∂y

for 2nd derivatives, let

∂z

∂x
= A,

∂z

∂y
= B

∂2z

∂x2
=
∂A

∂x
=

∂A

∂u

∂u

∂x
+
∂A

∂v

∂v

∂x

=
∂

∂u

(
∂z

∂x

)(
∂u

∂x

)
+

∂

∂v

(
∂z

∂x

)(
∂v

∂x

)

∂2z

∂y2
=
∂B

∂y
=

∂B

∂u

∂u

∂y
+
∂B

∂v

∂v

∂y

=
∂

∂u

(
∂z

∂y

)(
∂u

∂y

)
+

∂

∂v

(
∂z

∂y

)(
∂v

∂y

)
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Gradients

Reading
Trim 12.4−→ Gradients

Assignment
web page−→ assignment #4

At each point on a surface z = f(x, y) we can define two slopes - one in each spatial direction.

From the previous example: z(x, y) = 20e−x2/100 cosπy/30, where

at Px=5,y=10

∂f

∂x
= −0.78

∂f

∂y
= −1.41.

It is useful to combine these into one vector measure of the slope of the surface at P . This is called
the Gradient Vector.

grad f = ∇f ≡ î
∂f

∂x
+ ĵ

∂f

∂y

where the “del operator” -∇ is defined in 2D as: ∇ = î
∂

∂x
+ ĵ

∂

∂y

grad f
∣∣∣
P

= ∇f
∣∣∣
P

= î
∂f

∂x
+ ĵ

∂f

∂y
= î(−0.78) + ĵ(−1.41)

f = z = 20e−x
2/100 cos

(πy
30

)

The meaning is clear on a contour plot

The magnitude of the gradient vector is

|∇fatP | =
√

(−1.41)2 + (−0.78)2 = 1.61

peak 20

y=10

x=5

z=10 z=5

slope in this direction is

slope in this direction is

f

f

x

y

P

P

= -0.78

= -1.41

y

x

P

at P(x=5, y=10) :   z=7.79
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The gradient vector,∇f is:

• a vector at P that is perpendicular to the contour at P

• points uphill in the direction in which slope increases the most at P

• its magnitude is |∇fatP | = 1.61. If we move 1 unit in the∇f direction, then z increases
by 1.61 units. This is the biggest slope in any direction at P .

The gradient comes up in many applications because things tend to move down the gradient.

Examples:

1. If we release a ball at point P from rest it will roll down the gradient

• the direction will be in the negative∇f direction

• how far it rolls will depend on the magnitude |∇fatP |

2. Heat flow in a cooling fin

• in the cross section of the fin, T = f(x, y)

• the heat flow at some point P is in the∇f direction

• how much heat depends on the magnitude |∇fatP |
• Fourier’s law in 2D is ~q = −k∇T

3. Lava flowing from a volcano
• Mauna Loa and Kilauea on the Big

Island of Hawaii are highly active

• the gradient can be used to predict to
path of lava flowing to the sea
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Functions of 3 or More Independent Variables

The procedure can be extended to any number of independent variables. In Mechanical Engineer-
ing, the biggest number is usually 4. You may have more in abstract applications.

Examples: Solving for the transient temperature response in a room

T = f(x, y, z, t)

Includes 3 spatial variables and 1 time variable. Graphical representation becomes difficult.

Possible graphical representations include:

• multiple contour plots

• level surfaces (surfaces of constant value)

• “slice” - show T vs. z and fixed locations (x0, y0). Need many “slices” for full representa-
tion

Gradient in 3-D

For both T = f(x, y, z) and T = f(x, y, z, t) the vector gradient is

∇f = î
∂f

∂x
+ ĵ

∂f

∂y
+ k̂

∂f

∂z

with the del operator

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

since the gradient vector is a measure in space only. ∇f is a vector in 3-D space. If T =
f(x, y, z, t) then∇f will change with time.

Example 2.1

Find the temperature variation inside a spherical lead shield enclosing a small radioactive
sphere. The temperature will vary with radius. Suppose for example, that

T = f(x, y, z) =
1

√
x2 + y2 + z2

where 0.05 ≤ x, y, z ≤ 2
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Directional Derivatives

Reading
Trim 12.8−→ Directional Derivatives

Assignment
web page−→ assignment #4

We know how to find a vector that points in the direction of the maximum and minimum change
on slope but how do we account for the rate of change in slope in any other arbitrary direction. For
this we introduce the directional derivative.

THEOREM: let f(x, y, z) be continuous and possess partial derivatives fx, fy, fz throughout
some neighborhood of the point P0(x0, y0, z0). Let fx, fy and fz be continuous at P0. Then the
directional derivative at P0 exists for a unit vector v̂ = (vx, vy, vz) in the direction of v, such
that

To find the gradient along a line segment s

df

ds
=

df

dx︸︷︷︸
fx

dx

ds︸︷︷︸
vx

+
df

dy

dy

ds
+
df

dz

dz

ds

= fxvx + fyvy + fzvz

where f is expressed in terms of s, where s is a measure of directed distance along a vector and
the unit vector is v̂ = (vx, vy, vz). First set s = 0 at P0 = (x0, y0, z0).

To find f in this transformed space, we can write

x = x0 + vxs

y = y0 + vys

z = z0 + vzs

Note: we start at P0(x0, y0, z0) and attach a vector in the v̂(vx, vy, vz) direction with a magni-
tude of s

10



Then

∂f

∂s
=

∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s
+
∂f

∂z

∂z

∂s

=
∂f

∂x
vx +

∂f

∂y
vy +

∂f

∂z
vz

= Dvf

= directional derivative in direction v

P  (x  ,y  ,z  )

P  (x  ,y  ,z  )

0

1

0

1

0

1

0

1

x

y

z

v

The directional derivative of f at P0 in the direction v can also be defined as the average rate of
change of f with respect to distance as P1 approaches P0 along s.

∂f

∂s
= lim

∆s→0

∆f

∆s
= lim

P1→P0

f(x1, y1, z1)− f(x0, y0, y0)√
(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2

This can be expressed as a scalar product of the gradient of f and the vector v.

Dvf = ∇f · v̂

this can be thought of as the projection of∇f onto the vector v.
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Tangent Lines and Tangent Planes

Reading
Trim 12.9−→ Tangent Lines and Tangent Planes

Assignment
web page−→ assignment #4

This is another application of the gradient.

The basic idea is that the∇f is perpendicular to a contour line in 2D and perpendicular to a level
surface in 3D. Therefore the∇f vector will be perpendicular to a tangent line or plane. We will
use this to find the tangent line or plane at a point.

z = 20e−x2/100 cos
(πy

30

)

Find the plane tangent to the surface at point P (x = 5, y = 10).

one way is to use the Taylor series, keeping only the linear terms

z = 7.79− 0.78(x− 5)− 1.41(y − 10)

another way is to use the gradient ideas described above. We can write the equation of the hill as

F (x, y, z) = 20e−x
2/100 cos

(πy
30

)
− z

↪→ move z to the righthand side
if F = 0⇒ on surface
if F < 0⇒ outside
if F >⇒ inside

In 3D the level surface F = 0 defines the hill surface

∇F = î
∂F

∂x
+ ĵ

∂F

∂y
+ k̂

∂F

∂z

= î

[
20e−x

2/100
(
−

2x

100

)
cos

(πy
30

)]

+ĵ
[
20e−x

2/100 −
( π

30

)
sin

(πy
30

)]
+ k̂(−1)
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at P (5, 10, 7.79)

∇F |at P = î(−0.78) + ĵ(−1.41) + k̂(−1)

∇F |at P is perpendicular to the F = 0 surface and also perpendicular to a tangent plane at P .

We have:

• a point on the plane P (5, 10, 7.79)

• a vector normal to the plane ~N = ∇F

Therefore the equation of the tangent plane is

Nx(x− xP ) +Ny(y − yP ) +Nz(z − zP ) = 0

−0.78(x− 5)− 1.41(y − 10)− 1(z − 7.79) = 0

z = 7.79− 0.78(x− 5)− 1.41(y − 10)

This is the same as the Taylor series.

Tangent Plane : A(x− x0) +B(y − y0) + C(z − z0) = 0

Normal Line :
x− x0

A
=
y − y0

B
=
z − z0

C

where

A = fx(x0, y0), B = fy(x0, y0), C = −1
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Extrema of Functions

Reading
Trim 12.10−→ Relative Maxima and Minima

12.11−→ Absolute Maxima and Minima

Assignment
web page−→ assignment #5

Review of Functions of One Variable

The critical points are identified by the x-values where f ′ → 0 or where f ′ does not exist. We
apply the 2nd derivative test at these critical points:

P

P

P

P

1

2

3

4

y

x
a b

1. at P1: f ′ = 0 and f ′′ = 0

2. at P2: f ′ = 0 and f ′′ < 0

3. at P3: f ′ = 0 and f ′′ > 0

4. at P4: f ′ and f ′′ do no exist, i.e.→∞

The absolute max/min in the range a→ b is either at one of the critical points or at the end points
of the domain, Note: end points must be checked.

• we can see from the figure, that the absolute minimum in the range a → b is at f(a) and
that the absolute maximum in the range a→ b is at x = P2

• if the test fails, we can always plot up y = f(x) to see what it looks like

• sometimes it is easier to use plots or an understanding of the physics associated with the
problem to decide rather that formal tests
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Functions of Two Variables

We will examine z = f(x, y) where∇f = 0, i.e. the “flat” portion of the curved surface. The
critical points are where

∂f

∂x
= 0

∂f

∂y
= 0

In this instance, the 2nd derivative tests involve
∂2f

∂x2
and

∂2f

∂y2
and

∂2f

∂x∂y
.

Possible max/min locations include:

1. Peak Shape: Relative maximum at
∂f

∂x
=
∂f

∂y
= 0

∂2f

∂x2
< 0 and

∂2f

∂y2
< 0

The x− and y−slopes are decreasing +ve to -ve

2. Bowl Shape: Relative minimum at
∂f

∂x
=
∂f

∂y
= 0

∂2f

∂x2
> 0 and

∂2f

∂y2
> 0

The x− and y−slopes are increasing -ve to +ve

3. Saddle Shape: “saddle point” at
∂f

∂x
=
∂f

∂y
= 0, there is no clear min or max at

∂f

∂x
=

∂f

∂y
= 0. It looks like a max in x and a min in y.

∂2f

∂x2
< 0 but

∂2f

∂y2
> 0

4. Bowl Shape on x and y axes, but decreasing in the s direction

This is where the
∂2f

∂x∂y
derivative comes in.
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If the critical point is at P and

∂f

∂x

∣∣∣∣∣
P

= 0,
∂f

∂y

∣∣∣∣∣
P

= 0,

or either or both are undefined at P , then compute

A =
∂2f

∂x2

∣∣∣∣∣
P

B =
∂2f

∂x∂y

∣∣∣∣∣
P

C =
∂2f

∂y2

∣∣∣∣∣
P

D = B2 −AC

if D < 0 and A < 0 ⇒ relative max at P

if D < 0 and A > 0 ⇒ relative min at P

if D > 0 ⇒ saddle point at P

if D = 0 ⇒ test fails - plot to examine

To find the absolute max/min in the interval:

• check f(x, y) values at all critical points and on all the boundary points i.e. edges of the
interval

• the boundary points are more of an issue in 2D than the 1D case

Example 2.2

Find the max. or min. point for the function

z = f(x, y) = x2 + xy + y2

in the domain x2 + y2 ≤ 1.
x + y = 1

2 2

x

y

z
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Method of Least Squares

Reading
Trim 12.13−→ Least Squares

Assignment
web page−→ assignment #6

We will demonstrate the method through example.

Given four data points from an experiment

xi 0 1 4 6
yi 2 3 3 1

whereN = 4 is the number of data points.

Fit the “best” quadratic curve through the data.

g(x) = A+Bx+ Cx2

The curve can take any form we want. Often, these is some physical basis to guide us in deter-
mining which form of the curve to use. Sometimes we might use trial and error for a few different
curve shapes.

y

y

x x x x

y
y

y1

1 2

2

3 4

2
3

4

x

0 1 4 6

parabola - g(x) = A + Bx + Cx

we want the "best" value

of A, B, and C to fit the

data points

The question remains - how good is the fit? At each xi data point, we must compute the difference
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(residual). At xi

Ri = g(xi)︸ ︷︷ ︸
curve fit value at xi

− yi︸︷︷︸
data value at xi

The “best” curve would have minimum Ri summed over all data points. However, some Ri’s are
+’ve and some are -’ve. The cancellation effect can be misleading, giving a false indication of a
good fit. To avoid this, we need to square Ri, so all are +’ve. Therefore the “best” curve is based
on the minimumR2

i , summed over all points.

The sum of the square of the residuals is given as

S =
N∑
i=1

[g(xi)− yi]2 =
N∑
i=1

[
A+Bxi + Cx2

i − yi
]2

xi and yi are the given data points. The unknowns here areA,B,C. i.e. S = S(A,B,C). The
best fit will have the minimum value of S. For minimum S

∂S

∂A
= 0

∂S

∂B
= 0

∂S

∂C
= 0

We need to solve three equations to find
the best values for our three unknowns,
A,B,C.

The physical meaning of this is - on average,
a data point is 0.0464 away from the g(x)
curve - which is considered a good fit. (simi-
lar to a RMS type average).

y

x

0 1

1

2

3

4 6

g(x) = 2.035 + 1.114 x - 0.215 x

"best" parabola

for these data

The procedure can be used for any curve shape, however, it is sometimes convenient to change the
variable first.

If we want to fit the data xi and yi to g(x) = AeBx, it is easier to take the ln, i.e.

data xi, Yi = ln yi

ln g(x) = lnA+Bx

⇒ G(x) = A∗ +Bx

We will fit a lineA∗ +Bx to xi, Yi data.
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