
Vectors and Three Dimensional Analytic Geometry

Scalar and Vector Arithmetic

Reading
Trim 11.1−→ Rectangular Coordinates in Space

11.4−→ Scalar and Vector Products

Assignment
web page−→ assignment #1

Space Coordinates

1. Cartesian Coordinates: a system of mutually orthogonal coordinate axes in (x, y, z)

2. Cylindrical Coordinates:

based on the cylindrical coordinate
axes (r, θ, z). This is essentially the
polar coordinates (r, θ) used instead
of (x, y) coupled with the z coordi-
nate.
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Cylindrical and Cartesian coordinates are related as follows:

Cylindrical to Cartesian Cartesian to Cylindrical

x = r cos θ r =
√
x2 + y2

y = r sin θ θ = tan−1 y/x

z = z z = z
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3. Spherical Coordinates: based on the spherical coordinate system (r, θ, φ), where r is the
distance from the origin to the surface of the sphere, φ is the angle from the z axis to the
radial arm and θ is the angle of rotation about the z axis.
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The following relations hold between spherical and Cartesian coordinates.

Spherical to Cartesian Cartesian to Spherical

x = r sin φ cos θ r =
√
x2 + y2 + z2

y = r sin φ sin θ θ = tan−1 y/x

z = r cosφ φ = cos−1 z/
√
x2 + y2 + z2

Vectors

Components of Vectors

P (x  ,y  ,z  )

P (x  ,y  ,z  )
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Vector Notation
−→
P1P2 =

−→
OP2 −

−→
OP1

= î(x2 − x1) + ĵ(y2 − y1) + k̂(z2 − z1)

triple notation

= (x2 − x1, y2 − y1, z2 − z1)

general notation

= (vx, vy, vz)
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Addition and Subtraction of Vectors

Two vectors u = (ux, uy, uz) and v = (vx, vy, vz) can be added by:

• attaching v = (vx, vy, vz) to the terminal point of u = (ux, uy, uz)

• v can be arbitrarily positioned since vector location in space does not matter

P1

P4

P3

P2

triangular

addition

u = (u  ,u  ,u  )

v = (v  ,v  ,v  )

x

x
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z

u + v
u =

−→
P1P2

v =
−→
P3P4

u+ v =
−→
P1P2 +

−→
P3P4 =

−→
P1P4

Algebraically, vectors are added component by component, such that

u+ v = (ux + vx, uy + vy, uz + vz)

Two vectors u = (ux, uy, uz)
and v = (vx, vy, vz) are
subtracted by attaching u and v
to the same starting point. The
difference between u and v is
given as the vector from the tip
of v to the tip of u. (or by adding
one vector to the negative of the
second vector as shown below)

P1

P4

P3

P2
parallelogram

addition

(subtraction)
u = (u  ,u  ,u  )

u + ( -v )

-v

v = (v  ,v  ,v  )

x

x

y

y

z

z

u - v

u− v = (ux − vx, uy − vy, uz − vz)

Scalar Multiplication

The multiplication of a vector, v = (vx, vy, vz) by a positive scalar value, λ is obtained by
multiplying each component of the vector by the scalar value, such that

λv = λ(vx, vy, vz) = (λ · vx, λ · vy, λ · vz)
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The Scalar Product

The scalar (also referred to as the dot product or the inner product) of two vectors A and B is
defined as

A · B = |A| |B| cos θ

where θ is an angle between 0 ≤ θ ≤ π defined by the vector pair when the initial points
coincide.

Note: We can also find the angle between two vectors as: cos θ =
A ·B
|A||B|

Useful Properties

A(ax, ay, az) B(bx, by, bz)

Scalar Product A · B = axbx + ayby + azbz

Commutative law A · B = B · A

Distributive law A · (B + C) = A · B + A · C

(A + B) · C = A · C + B · C

(A + B) · (C + D) = A · C + A ·D
+B · C + B ·D

Orthogonal vectors A · B = 0 if and only ifA andB are perpendicular
(since cos 90o = 0)

Coincident vectors B = A, then θ = 0 and cos θ = 1 → A · A = |A|2

Note:

θ = 0 vectors are parallel θ = π/2 (cos θ = 0) vectors are perpendicular
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The Vector Product

Also referred to as the cross product or the outer product.

Two vectorsA andB sharing the same origin and separated by a angle θ form a plane. If we let ~n
be a unit vector perpendicular to this plane, pointing in a direction dictated by the right hand rule,
the vector or cross product can be defined as

A × B = n̂|A| |B| sin θ

↪→ since it is a vector we
must give it direction

A x B

A

B

n
^

Useful Properties

A(ax, ay, az) B(bz, by, bz)

A × B = −B × A

A × (B + C) = A × B + A × C

(B + C) × A = B × A + C × A

A × B =

∣∣∣∣∣∣∣
î ĵ k̂
ax ay az
bx by bz

∣∣∣∣∣∣∣
î(aybz − azby)− ĵ(axbz − azbx) + k̂(axby − aybx)
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Vectors and Points, Curves, Lines in 3-D

Reading
Trim 11.2−→ Curves and Surfaces

11.3−→ Vectors
11.5−→ Planes and Lines

Assignment
web page−→ assignment #1

Point in 3D

The position vector for this point is given by the directed line segment
−→
OP0.

~R = îx0 + ĵy0 + k̂z0

=
∣∣∣~R∣∣∣ R̂ =

√
x2

0 + y2
0 + z2

0 R̂

= magnitude of ~R × unit

vector in ~R direction x

y

z

i j

k
^

^
^

^

P (x , y , z )0 0 00

0

RR

Curve in 3D

R(t)
P(x,y,z)

O

x

y

z

Po

P1

C

increasing t

Imagine that point P moves through
3D space in time. These equations are
denoted as the parametric equations of
motion for the particle and we refer to
C as the trajectory of the particle in 3D
space.

The position vector is now a function of
t as well.

~R(t) = î x(t) + ĵ y(t) + k̂ z(t)

Example 1.1

Suppose P moves from (−1, 0, 1) to (2, 2,−1) in 4 seconds in a straight line and the x coordinate
increases linearly with time. i.e. x(t) = at+ b

a) find the position vector vs. time, for points on the line

b) find the equation of the line in 3D space
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Vectors and Planes in 3-D

Reading
Trim 11.5−→ Planes and Lines

11.6−→ Geometric Applications of Scalar and Vector Products

Assignment
web page−→ assignment #2

Suppose point P , with position vector ~R, lies in a plane in 3D space. One way to define the plane
is through a unit normal vector, n̂.

x

y

z

P

R

n

x

y

z

PP

R

R0

0

plane

n
^

n̂ = înx + ĵny + k̂nz

If we assume there is a fixed point,
P0(x0, yo, z0), lying in the plane with
position vector

~R0 = îx0 + ĵy0 + k̂z0

We can find the equation for the arbitrary point
P (x, y, z) in the plane, by first defining the po-
sition vector to P as

~R = îx+ ĵy + k̂z
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Consider

~R− ~R0 = î(x− x0) + ĵ(y − y0) + k̂(z − z0)

R0

R0

R

R-
P0

P

origin

this vector must lie

in the plane For the points to be in the plane,
~R − ~R0 must be perpendicular to n̂.
Therefore

(~R− ~R0) · n̂ = 0

The dot product gives

î(x− x0) + ĵ(y − y0) + k̂(z − z0)︸ ︷︷ ︸
~R−~R0

 ·
înx + ĵny + k̂nz︸ ︷︷ ︸

n̂

 = 0

which leads to

nx(x− x0) + ny(y − y0) + nz(z − z0) = 0

This is the general equation for a plane through a point (x0, y0, z0) that is perpendicular to
(nx, ny, nz).

Example 1.2

Given that points (1, 0, 0) (0, 3, 0) (0, 0, 2) lie on a plane in 3D, find

a) the unit normal vector n̂ to the plane

b) the equation describing points (x, y, z) lying in the plane
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Calculation of Distance in 3-D

Reading
Trim 11.6−→ Geometric Applications of Scalar and Vector Products

Assignment
web page−→ assignment #2

i) shortest distance between a point and a line

3 steps are required to find the shortest dis-
tance between a point and a line:

1. determine the position vector between
an arbitrary point on the line and the
point of interest itself

2. find the unit vector along the line

3. the shortest distance is the length of the
cross product of the position vector and
the unit vector along the line

1

2

2 4

4

x

y

z

P0

7

P1(1,2,4)

P2(2,4,7)

We will use the case of robot arm moving along a straight line to illustrate the technique. The
equation of the straight line is given in symmetric form as

x− 1 =
y − 2

2
=
z − 4

3

How close does it pass to the point P0(1, 3, 6)?

Step 1: Find a position vector between the line and the point

set x = 1 to find point P1 and its position vector

P1 : ~R1 = î+ 2ĵ + 4k̂ ⇒ P1(1, 2, 4)

find the position vector to our point of interest

P0 : ~R0 = î+ 3ĵ + 6k̂ ⇒ P0(1, 3, 6)
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P

P

P

P

P

R
R

R

R

R

R

P

P

0

0

1

1

1

1

2

0

1
0

1
0

12

2

2

line
d

d

d

e

The position from the line to the point is

~R10 = ~R0 − ~R1 = (0)̂i+ ĵ + (2)k̂

Step 2: Find the unit vector along the line

The position vector to a second point along the line can be determined by letting x = 2

P2 : ~R2 = 2î+ 4ĵ + 7k̂ ⇒ P2(2, 4, 7)

By definition, the unit vector along the line, ê, is given as the vector divided by its magnitude

ê =
~R2 − ~R1∣∣∣~R2 − ~R1

∣∣∣ =
~R12

|~R12|

where

~R12 = ~R2 − ~R1 = î+ (2)ĵ + (3)k̂
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Step 3: Find the shortest distance between the point and the line

Method 1: Cross Product Approach

d =
|~R10 × ~R12|
|~R12|

Method 2: Dot Product Approach

d =
∣∣∣~R10

∣∣∣ sin θ

Using the cross product approach:

|~R10 × ~R12| =
√

(−1)2 + 22 + (−1)2 =
√

6

|~R12| =
√

12 + 22 + 32 =
√

14

The magnitude of d is

mag d =

√
6

√
14

= 0.655

ii) shortest distance between a point and a plane

3 steps are required to find the shortest distance between a point and a plane:

1. determine a vector between an arbitrary point in space and a point on the plane

2. find the unit normal from the point to the plane

3. use the dot product of the vector and the unit normal to find the shortest distance

The equation of a plane is given as

Ax+By + Cz +D = 0

Let P1(x1, y1, z1) be any point in space and
Q(x, y, z) be a point on the plane specified
above as shown below

P (x ,y ,z )1 1 1 1

Q(x,y,z)

R

project P-Q onto

the normal

Ax + By + Cz + D = 0

d

n̂
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Step 1: Determine the vector between the point in space and the point on the plane

~PQ = (x− x1), (y − y1), (z − z1)

Step 2: Determine the unit normal vector between the point in space and the plane

normal to plane = (A,B,C)

P̂R =
~PR

| ~PR|
=

±(A,B,C)
√
A2 +B2 + C2

Step 3: Use the dot product approach to find the shortest distance

d =
|Ax1 + By1 + Cz1 + D|

√
A2 +B2 + C2

iii) shortest distance between two skewed lines

3 steps are required to find the shortest dis-
tance between two non-instersecting lines:

1. find the unit normal vector between the
two lines, n̂

2. determine a position vector staring at
any point on the first line and terminat-
ing at any point on the second line

3. the shortest distance is the length of the
position vector projected onto the unit
normal vector

line 2

lin
e

1

P
1

P
2

P
3

P
4n

R
12

R
34

R

We will use the case of the following two non-intersecting, skewed lines to illustrate.

line 1 x = y = z

line 2 y = 2 z = 0
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Step 1: Find the unit normal vector (either dot product or cross product approach

Dot Product Approach ⇒ cos θ =
A ·B
|A| |B|

= 0 (for ⊥)

We know that the dot product of a line and its normal equals zero.

nx(x− x0) + ny(y − y0) + nz(z − z0) = 0

If (0, 0, 0) and (1, 1, 1) are two points on line 1, then

nx + ny + nz = 0 (1)

If (1, 2, 0) and (0, 2, 0) are two points on line 2, then

nx = 0 (2)

Therefore nx = 0, ny = 1 and nz = −1 is a solution and

n̂ =
~n

|~n|
=
nx î+ ny ĵ − nz k̂√

n2
y + n2

z

=
1
√

2
(ĵ − k̂)

Cross Product Approach ⇒ n̂ =
~n

|~n|
=

A×B
|A| |B| sin θ

=
A×B
|~n|

2 points on line 1 P1(0, 0, 0) and P2(1, 1, 1)

vector on line 1 ~R21 = ~R2 − ~R1 = î+ ĵ + k̂

2 points on line 2 (0, 2, 0) and (1, 2, 0)

vector on line 2 ~R43 = ~R4 − ~R3 = +î

~n = (̂i+ ĵ + k̂)︸ ︷︷ ︸
vector 1

× î︸︷︷︸
vector 2

= î(0)− ĵ(0− 1) + k̂(0− 1) = ĵ − k̂

and we know

n̂ =
~n

|~n|
=
ĵ − k̂
√

2
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Step 2: Find a position vector between points on each line

The position vector between any 2 points on the 2 lines, say (0, 0, 0) and (1, 2, 0) is

~R = î+ 2ĵ

Step 3: Find the shortest distance, d

Dot Product
~n · line 1 = 0
~n · line 2 = 0 ⇒ solve for nx, ny, nz

n̂ =
~n

|~n|

d = |line 3 · n̂|

Cross Product

n̂ =
line 1× line 2
|line 1× line 2|

d = |line 3 · n̂|

Dot Product Approach

d =

∣∣∣∣∣∣(̂i+ 2ĵ) ·
ĵ − k̂
√

2

∣∣∣∣∣∣ =
2
√

2
=
√

2

(1,1,1)

(1,2,0)

x

y

z up

d =   2

y=2 line
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Differentiation of Vectors

Reading
Trim 11.9−→ Differentiation and Integration of Vectors

Assignment
web page−→ assignment #2

Think of a dynamics problem of a particle moving along some curve in 3D space where a twist
may be possible, i.e. not planar. The particles position is defined by a position vector

~R(t) = î x(t) + ĵ y(t) + k̂ z(t) for a ≤ t ≤ b

The formal definition of the derivative can be written as

d~R

dt

∣∣∣∣∣∣
at P

= lim
∆t→0

~R(t+ ∆t)− ~R(t)

∆t

How do we calculate this from the definition?

d~R

dt

∣∣∣∣∣∣
at P

= lim
∆t→0

îx(t+ ∆t) + ĵy(t+ ∆t) + k̂z(t+ ∆t)− îx(t)− ĵy(t)− k̂z(t)

∆t

= î lim
∆t→0

x(t+ ∆t)− x(t)

∆t
+ ĵ lim

()
+ k̂ lim

()

= î
dx(t)

dt
+ ĵ

dy(t)

dt
+ k̂

dz(t)

dt

We can just differentiate each component in the po-
sition vector ~R(t). The differentiation process
produces another vector. The physical meaning of
differentiation is that we have a slope but not just a
slope – it is tied back to the particle motion where
~R(t+ ∆t)− ~R(t) is a vector difference that in the
limit will give us the tangent vector at point P .

P

R(t)

R(t+  t)

curve

vector difference
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Therefore we must have the rate of change position vector along the curve in the T̂ direction. (Let
T̂ be the unit vector in the tangent direction)

d~R

dt
=

∣∣∣∣∣∣d
~R

dt

∣∣∣∣∣∣ T̂
Given the particle trajectory for curve ~R(t)

d~R

dt

∣∣∣∣∣∣
at P

= î
dx

dt
+ ĵ

dy

dt
+ k̂

dz

dt
=
∣∣∣~V ∣∣∣ T̂

where the velocity of the particle, ~V , is the rate of change of position.

Similar ideas apply for higher derivatives.

2nd derivative of ~R(t)

It is easy to see

d2 ~R

dt2

∣∣∣∣∣∣
at P

= î
d2x

dt2
+ ĵ

d2y

dt2
+ k̂

d2z

dt2

Since we have just shown that

d~R

dt
=

∣∣∣∣∣∣d
~R

dt

∣∣∣∣∣∣ T̂ =
∣∣∣~V ∣∣∣ T̂

Then the second derivative is

d2 ~R

dt2
=

d

dt

d~R
dt

 =
d

dt

(∣∣∣~V ∣∣∣ T̂ )

= T̂
d
∣∣∣~V ∣∣∣
dt︸ ︷︷ ︸

acceleration

+
∣∣∣~V ∣∣∣ dT̂

dt

The first term, T̂
d
∣∣∣~V ∣∣∣
dt

, is the acceleration component along the curve in the T̂ direction, i.e.

the speed change along the curve.
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The second term is the centripetal acceleration due to a changing trajectory path

∣∣∣~V ∣∣∣
∣∣∣∣∣∣dT̂dt

∣∣∣∣∣∣ N̂

where N̂ is called the principal normal unit vector.

Therefore for a given curve

d2 ~R

dt2
= î

d2x

dt2
+ ĵ

d2y

dt2
+ k̂

d2z

dt2
= T̂

d
∣∣∣~V ∣∣∣
dt

+
∣∣∣~V ∣∣∣

∣∣∣∣∣∣dT̂dt
∣∣∣∣∣∣ N̂

where

1st term velocity acceleration at P

2nd term Cartesian components of acceleration

3rd term components of acceleration in coordinates relative to the trajectory
- speed along the trajectory plus the centripetal acceleration

due to trajectory shape

Note: we can turn this around and use to calculate the principal normal to any given curve at ~R(t)

N̂ =

dT̂

dt∣∣∣∣∣∣dT̂dt
∣∣∣∣∣∣

where

T̂ =

dR̂

dt∣∣∣∣∣∣dR̂dt
∣∣∣∣∣∣

and

B̂ = T̂ × N̂

gives the third local coordinate.
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Integration of Vectors

Reading
Trim 11.9−→ Differentiation and Integration of Vectors

Assignment
web page−→ assignment #2

Some of the ideas learned in first year calculus carry over to vectors in 3-D space.

For a moving particle, the position vector ~R(t) and its derivative
d~R(t)/dt = ~V (t) =

∣∣∣~V (t)
∣∣∣ T̂ (t) can be used.

We see that

∫ d~R(t)

dt
· dt =

∫
~V (t)dt = ~R(t) + ~C

where ~C is the vector constant.

Example 1.3

Given a particle at t = 0 and position (2, 0, 2) that moves with a velocity

~V (t) = î(−2 sin t) + ĵ(2 cos t) + k̂(2 sin t− 2 cos t)

for 0 ≤ t ≤ 2π, find the curve that ~R(t) traces in 3D space.
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Tangent Vectors and Arc Length of Curves in 3-D

Reading
Trim 11.10−→ Parametric and Vector Representation of Curves

11.11−→ Tangent Vectors and Lengths of Curves

Assignment
webpage−→ assignment #2 & #3

The tangent vector to the curve at point P is given by

~T =
d~R

dt
=
dx

dt
î+

dy

dt
ĵ +

dz

dt
k̂

There are two possible tangent directions at each
point, however, the tangent vector is always defined
in the direction of increasing t along the curve as
shown below.

To find the unit tangent vector to a curve, T̂ at any
point along the curve, the tangent vector is normal-
ized with respect to its length as follows

T̂ =
~T

|~T |
=

d~R/dt

|d~R/dt|
x

y

z

P

dR
dt

dR
dt

-

R(t)

t=bt=a

We recall that for the 2D case that the length is given by

∆L2 = ∆x(t)2 + ∆y(t)2

∆L =
√

∆x(t)2 + ∆y(t)2 =

√
∆x(t)2

∆t2
+

∆y(t)2

∆t2
∆t

In differential form this becomes

In differential form this becomes

dL =

√√√√(dx(t)

dt

)2

+

(
dy(t)

dt

)2

dt
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In general

L =
∫ x1

x=x0

√
dx2 + dy2

dx2
dx

=
∫ x1

x=x0

√√√√1 +

(
dy

dx

)2

dx

Summing all the differential lengths, starting at t = a

L =
∫
t=a

√√√√(dx(t)

dt

)2

+

(
dy(t)

dt

)2

dt or

We can extend this to 3D space, where the position vector

~R(t) = îx(t) + ĵy(t) + k̂z(t)

for a ≤ t ≤ b.

If we consider a small section of the curve for a small ∆t

∆S ≈
∣∣∣~R(t+ ∆t)− ~R(t)

∣∣∣
If we divide through by ∆t

∆S

∆t
=

∣∣∣∣∣∣
~R(t+ ∆t)− ~R(t)

∆t

∣∣∣∣∣∣
In the limit as ∆t→ 0 the equality is exact, therefore

dS

dt
=

∣∣∣∣∣∣d
~R(t)

dt

∣∣∣∣∣∣
Note the signs, +’ve ∆S in the direction of +’ve ∆t.
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We have

dS

dt
=

∣∣∣∣∣∣d
~R

dt

∣∣∣∣∣∣ =

∣∣∣∣∣îdx(t)

dt
+ ĵ

dy(t)

dt
+ k̂

dz(t)

dt

∣∣∣∣∣
Therefore

dS

dt
=

√√√√(dx
dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

or

dS =

√√√√(dx
dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt

where dS is the arc length along the curve.

The total length of the curve is given by

L =
∫ b
a
dS =

∫ b
t=a

√√√√(dx
dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt

If we use the distance traveled along the curve, S(t) to denote position, where

S(t) =
∫ √√√√(dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt

then the unit tangent vector can be specified independent of the length of the tangent vector, |T |.

T̂ =
~T

|~T |
=

d~R/dt

|d~R/dt|
=
d~R/dt

dS/dt
=
d~R

dS

T̂ =
d~R

dS
=
dx

dS
î+

dy

dS
ĵ +

dz

dS
k̂
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Example 1.4

Find the length of the curve of intersection between

surface 1 y = 2x (a plane)

surface 2 z =
x2 + y2

5

 for z ≤ 25
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Curvature and Centripetal Acceleration

Reading
Trim 11.12−→ Normal Vectors, Curves, and Radius of Curvature

11.13−→ Displacement, Velocity, and Acceleration

Assignment
web page−→ assignment #3

Normal Vector

The normal to a point is the line which is perpendicular to the tangent vector, T , given in the
previous section. If the unit tangent vector in 2D space is given in terms of the length along the
curve, S

T̂ =
d~R

dS
=
dx

dS
î+

dy

dS
ĵ

then the unit normal vector, N̂ , is

N̂ = −
dy

dS
î+

dx

dS
ĵ

Because of orthogonality T̂ · N̂ = 0. In 3D space there is not a single normal vector but an
entire plane of normal vectors.

Two unique vectors can be identified in this plane of vectors, they are the principal normal, given
as

N̂ =
~N

| ~N |
=

dT̂ /dt · (dt/dS)∣∣∣dT̂ /dt · (dt/dS)
∣∣∣ =

dT̂ /dS∣∣∣dT̂ /dS∣∣∣

and the binormal given as

B̂ = T̂ × N̂

These vectors are shown in the fol-
lowing figure.

x

y

z

P

T

N

B
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Curvature and Radius of Curvature

The rate of change of the unit tangent vector with respect to the distance travelled along the curve,
i.e. dT̂ /dS can be thought of as a measure of the rate of change of direction of T̂ or a measure of
the curvature of the curve.

Since the vector T̂ has both direction and magnitude, the curvature of a curve is more aptly defined
in terms of a curvature parameter, κ(S), where

κ(S) = rate of change of the unit tangent with respect to distance travelled

κ(S) =

∣∣∣∣∣∣dT̂dS
∣∣∣∣∣∣ =

∣∣∣∣∣∣dT̂ /dtdS/dt

∣∣∣∣∣∣ (1)

but since

dS

dt
=

∣∣∣∣∣∣d
~R(t)

dt

∣∣∣∣∣∣ =
∣∣∣~V ∣∣∣ (2)

and [from page 32 of the notes]

|~aN̂ | =
∣∣∣~V ∣∣∣

∣∣∣∣∣∣dT̂dt
∣∣∣∣∣∣ ⇒

∣∣∣∣∣∣dT̂dt
∣∣∣∣∣∣ =
|~aN̂ |∣∣∣~V ∣∣∣ (3)

If we substitute Eqs. 2 and 3 into 1, we get

κ(S) =
|~aN̂ |∣∣∣~V ∣∣∣ ·

1∣∣∣~V ∣∣∣
Noting that

|~aN̂ | =
|~V × ~a|
|~V |

a
N

a
T

|a|

^
^

κ(S) =
|~V × ~a|
|~V |3

⇒ κ(S) =
|~R′ × ~R′′|
|~R′|3

and

ρ(S) =
1

κ(S)
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Centripetal Acceleration

Recall that the 2nd derivative (acceleration) can be written as

d2 ~R

dt2
= î

d2x

dt2
+ ĵ

d2y

dt2
+ k̂

d2z

dt2

=
d
∣∣∣~V ∣∣∣
dt

T̂︸ ︷︷ ︸
tangent to curve

+
∣∣∣~V ∣∣∣

∣∣∣∣∣∣dT̂dt
∣∣∣∣∣∣ N̂︸ ︷︷ ︸

normal to curve

where the acceleration normal to the path is given as

|~aN̂ | =
∣∣∣~V ∣∣∣2 κ = |~V |2/ρ

Therefore

d2 ~R

dt2
=
d
∣∣∣~V ∣∣∣
dt

T̂ +

∣∣∣~V ∣∣∣2
ρ
N̂

This clearly relates the centripetal acceleration locally to the curvature of path followed by the
particle.

The limiting case can be shown by looking at the motion along a straight line path

ρ→∞ (everywhere)

d2 ~R

dt2
=
d
∣∣∣~V ∣∣∣
dt

T̂

since the only acceleration is along the path.

For a circular path of radiusR, with a particle moving at a constant speed ~V0

d2 ~R

dt2
=

∣∣∣~V ∣∣∣2
ρ
N̂ =

∣∣∣~V ∣∣∣2
R
N̂

The only acceleration is perpendicular to the path.
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Example 1.5

A particle moves through 3−D space so that its position vector at time t is

~R(t) = t̂i+ t2ĵ + t3k̂

The path is referred to as a twisted cube as shown below

8

-8

0

2

-2

4

x

y

z

R(t)

Find the tangential and normal components of acceleration at time t.

Example 1.6: This example gives a good summary of the types of vector/3D
curve calculations you should be able to do after working
through chapter 11 of Trim.

A particle follows a trajectory in space given by

x(t) = 2 cos t

y(t) = 2 sin t

z(t) = 2π − t

x2 = 4 cos2 t
y2 = 4 sin2 t

x2 + y2 = 4(cos2 t+ sin2 t) = 4

with x, y, z in meters and 0 ≤ t ≤ 2π in seconds.

a) sketch the trajectory curve

b) calculate local coordinates T̂ , N̂ , B̂ to the curve at any time t

c) calculate the length of the curve

d) find the curvature at any time t

e) express the particle velocity and acceleration at any time t in T̂ , N̂
coordinates
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Application of Vector Products: Force Analysis - Backing Up A Trailer

Reading
Trim 11.7−→ Physical Applications of Scalar and Vector Products

Assignment
web page−→ project #1

Modelling Concepts

Instantaneous Center: an imaginary point
that is the center of rotation of the vehicle,
trailer

• where all wheels travel in a circular
path around the IC

x

x

x

IC

all wheels travel in
circular path around IC

Applying Force:

• at the hitch

• moment at pointQ about point P

• ~F must be⊥ ~PQ

• why?⇒ motion is rotational only
- not translational

x

x

P

Q
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Project

Project Goal #1: Backing up the trailer “by hand” is easy (relatively) to understand - adding a
vehicle becomes more complicated.

Vehicle has instantaneous center

x

• imaginary point that is the center of rotation of the
vehicle

• all wheels trace a circular path around IC

• acts as a point of rotation of moment vector at
trailer hitch

Vehicle moment transmits force to trailer

P

Q

F

x

y

• same as trailer

• ~F ⊥ ~PQ (IC to hitch)

• trailer response to force depends on position of
trailer relative to the vehicle

• set up coordinate system transformation from ~Fxy (vehicle) to ~Fuv (trailer)

28



F
x

y

u

v
ɵ

ɵ

recall: ~u · ~v = uv
⇒ component of ~u in v̂ direction

Fu = ~Fxy · û

Fv = ~Fxy · v̂
x

y

u

v Fxy

We can use the same approach to define a local coordinate system based on (u, v)

Fu = ~Fxy · îu ← special unit vector, (1, 0, 0), based on local (u, v) coords

Fu = (Fxîx + Fyĵy) · îu

Fy = (Fxîx + Fyĵy) · ĵv

29



or expressed in matrix form[
Fu
Fv

]
=

[
îx · îu ĵy · îu
îx · ĵv ĵy · ĵv

] [
Fx
Fy

]

~Fuv = R ~Fxy whereR = transformation matrix

x

y

u
v

ɵ

ɵ

S A

T C

îx · îu =
∣∣∣̂ix∣∣∣ ∣∣∣̂iu∣∣∣ cos θ = cos θ

ĵx · îu = cos(π/2− θ) = sin θ

îx · ĵv = cos(π/2 + θ) = − sin θ

ĵy · ĵv = cos θ

Therefore[
Fu
Fv

]
=

[
cos θ sin θ
− sin θ cos θ

] [
Fx
Fy

]

Example

Find coordinates of vector ~Fxy (3, 1, 0) in u v coordinates for angle of rotation of
θ = π/9
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Project Goal #2: Develop model predictions, verify that the vehicle/trailer behaves as predicted

x

y
u

v

x

ANALYSIS← must do this first
IC vehicle given for fixed steering positions
→ show car

1. calculate moment ~Fxy

2. transform to ~Fuv

3. find IC for trailer, path travelled by
wheels

Measure→ verification of IC, track
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Differential Calculus of Multivariable Functions

Introduction to Multivariable Functions

Reading
Trim 12.1−→ Multivariable Functions

12.2−→ Limits and Continuity

Assignment
web page−→ assignment #3

Functions of Two Independent Variables

If z is uniquely determined when the values of x and y are given, we say that z is a single-valued
function of x and y and indicate this fact by the notation

z = f(x, y)

Many engineering applications exist that show this functional dependence, for instance the vibra-
tion of a string or the temperature of a plate or a cooling fin

T = f(x, y)

It is sometimes useful to visualize the function graphically. The function z = f(x, y) can be
visualized in two different ways:

1. a contour plot

2. a surface plot
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Partial Derivatives

Reading
Trim 12.3−→ Partial Derivatives

12.5−→ Higher Order Partial Derivatives

Assignment
web page−→ assignment #4

For y = f(x) there is only one slope at any point P ,
where the slope of the tangent at P is

slope =
dy

dx

∣∣∣∣∣
x=x0

= lim
∆x→0

f(x0 + ∆x)− f(x0)

∆x

∣∣∣∣∣
at x=x0

y

P

xxo

x

y=f(x)

However for a 3-dimensional surface, z = f(x, y), the slope varies depending on the direction
you move on the surface.

For z(x, y) = 20e

(
−x2/100

)
cos

πy

30
find the slope at P (x = 5, y = 10)

2



Different notations of the partial derivative can be used.

∂f

∂x
or fx

∂f

∂y
or fy

Higher Orders

∂2f

∂x2
or fxx

∂2f

∂y2
or fyy

∂2f

∂x∂y
or fyx = fxy

←− order of calculation −→ order of calculation

Higher Order Partial Derivatives

Partial derivatives of the second order are denoted as

∂2f

∂x2
,

∂2f

∂y2
,

∂2f

∂x∂y
,

∂2f

∂y∂x

where

∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
,

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)

as so on.

If the function z = f(x, y) together with the partial derivatives fx, fy, fxy and fyx are continu-
ous, then

∂

∂x

(
∂f

∂y

)
=

∂

∂y

(
∂f

∂x

)

3



Chain Rule for Partial Derivatives

Reading
Trim 12.6−→ Chain Rules for Partial Derivatives

Assignment
web page−→ assignment #4

Review of Single Variable Functions

• if we understand for 1 variable, it is easy to understand for 2 or 3 variables

• the changes are straight forward

dy

dx
=
dy

du
·
du

dx

Using the tree we need to remember⇒

y
|
u
|
x

LHS →
dy

dx
→ implies we are looking at the function y(x)

RHS →
dy

du
→ implies we are looking at the same y but now the independent variable is u,

i.e. y(u).

The chain rule relates slopes of the 2 plots

dy(x)

dx︸ ︷︷ ︸
slope @ any point x

=
dy(u)

du︸ ︷︷ ︸
limu→0

y(u+∆u)−y(u)
∆u

×
du(x)

dx︸ ︷︷ ︸
the effect of a change of scale
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Chain Rule for Multivariable Functions

1. Given a dependent variable as a function of several independent variables, transform the
dependent variable into a new set of independent variables:

z︸︷︷︸
dependent

→ independent︷ ︸︸ ︷
(u, v) −→ z(x, y)

You will typically be asked to find

∂z

∂x
,
∂2z

∂x2
,
∂z

∂y
,
∂2z

∂y2

2. map the dependency of the dependent variable in terms of the independent variables, in our
case, z(u, v)

z
/ \

u v

3. map the dependency of the independent variables in the transformed space in our case,
u(x, y) and v(x, y)

z
/ \

u v
/ \ / \

x y x y

4. use the chain rule to form all paths from z → x and z → y

∂z

∂x
=

∂z

∂u

∂u

∂x
+
∂z

∂v

∂v

∂x

∂z

∂y
=

∂z

∂u

∂u

∂y
+
∂z

∂v

∂v

∂y

5. How do we find the 2nd derivative?

• remember
∂2z

∂x2
=

∂

∂x

(
∂z

∂x

)
︸ ︷︷ ︸

we already know how to do this
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• replace z at the top of the tree with
∂z

∂x

∂z/∂x
/ \

u v
/ \ / \

x y x y

• find all paths between ∂z/∂x

• remember, we may need to do the same for y if asked

∂2z

∂x2
=

[
∂

∂u

(
∂z

∂x

)]
∂u

∂x
+

[
∂

∂v

(
∂z

∂x

)]
∂v

∂x

∂2z

∂y2
=

[
∂

∂u

(
∂z

∂y

)]
∂u

∂y
+

[
∂

∂v

(
∂z

∂y

)]
∂v

∂y

for 2nd derivatives, let

∂z

∂x
= A,

∂z

∂y
= B

∂2z

∂x2
=
∂A

∂x
=

∂A

∂u

∂u

∂x
+
∂A

∂v

∂v

∂x

=
∂

∂u

(
∂z

∂x

)(
∂u

∂x

)
+

∂

∂v

(
∂z

∂x

)(
∂v

∂x

)

∂2z

∂y2
=
∂B

∂y
=

∂B

∂u

∂u

∂y
+
∂B

∂v

∂v

∂y

=
∂

∂u

(
∂z

∂y

)(
∂u

∂y

)
+

∂

∂v

(
∂z

∂y

)(
∂v

∂y

)
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Gradients

Reading
Trim 12.4−→ Gradients

Assignment
web page−→ assignment #4

At each point on a surface z = f(x, y) we can define two slopes - one in each spatial direction.

From the previous example: z(x, y) = 20e−x
2/100 cosπy/30, where

at Px=5,y=10

∂f

∂x
= −0.78

∂f

∂y
= −1.41.

It is useful to combine these into one vector measure of the slope of the surface at P . This is called
the Gradient Vector.

grad f = ∇f ≡ î
∂f

∂x
+ ĵ

∂f

∂y

where the “del operator” -∇ is defined in 2D as: ∇ = î
∂

∂x
+ ĵ

∂

∂y

grad f
∣∣∣
P

= ∇f
∣∣∣
P

= î
∂f

∂x
+ ĵ

∂f

∂y
= î(−0.78) + ĵ(−1.41)

f = z = 20e−x
2/100 cos

(πy
30

)

The meaning is clear on a contour plot

The magnitude of the gradient vector is

|∇fatP | =
√

(−1.41)2 + (−0.78)2 = 1.61

peak 20

y=10

x=5

z=10 z=5

slope in this direction is

slope in this direction is

f

f

x

y

P

P

= -0.78

= -1.41

y

x

P

at P(x=5, y=10) :   z=7.79
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The gradient vector,∇f is:

• a vector at P that is perpendicular to the contour at P

• points uphill in the direction in which slope increases the most at P

• its magnitude is |∇fatP | = 1.61. If we move 1 unit in the∇f direction, then z increases
by 1.61 units. This is the biggest slope in any direction at P .

The gradient comes up in many applications because things tend to move down the gradient.

Examples:

1. If we release a ball at point P from rest it will roll down the gradient

• the direction will be in the negative∇f direction

• how far it rolls will depend on the magnitude |∇fatP |

2. Heat flow in a cooling fin

• in the cross section of the fin, T = f(x, y)

• the heat flow at some point P is in the∇f direction

• how much heat depends on the magnitude |∇fatP |
• Fourier’s law in 2D is ~q = −k∇T

3. Lava flowing from a volcano
• Mauna Loa and Kilauea on the Big

Island of Hawaii are highly active

• the gradient can be used to predict to
path of lava flowing to the sea

8



Functions of 3 or More Independent Variables

The procedure can be extended to any number of independent variables. In Mechanical Engineer-
ing, the biggest number is usually 4. You may have more in abstract applications.

Examples: Solving for the transient temperature response in a room

T = f(x, y, z, t)

Includes 3 spatial variables and 1 time variable. Graphical representation becomes difficult.

Possible graphical representations include:

• multiple contour plots

• level surfaces (surfaces of constant value)

• “slice” - show T vs. z and fixed locations (x0, y0). Need many “slices” for full representa-
tion

Gradient in 3-D

For both T = f(x, y, z) and T = f(x, y, z, t) the vector gradient is

∇f = î
∂f

∂x
+ ĵ

∂f

∂y
+ k̂

∂f

∂z

with the del operator

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

since the gradient vector is a measure in space only. ∇f is a vector in 3-D space. If T =
f(x, y, z, t) then∇f will change with time.

Example 2.1

Find the temperature variation inside a spherical lead shield enclosing a small radioactive
sphere. The temperature will vary with radius. Suppose for example, that

T = f(x, y, z) =
1

√
x2 + y2 + z2

where 0.05 ≤ x, y, z ≤ 2

9



Directional Derivatives

Reading
Trim 12.8−→ Directional Derivatives

Assignment
web page−→ assignment #4

We know how to find a vector that points in the direction of the maximum and minimum change
on slope but how do we account for the rate of change in slope in any other arbitrary direction. For
this we introduce the directional derivative.

THEOREM: let f(x, y, z) be continuous and possess partial derivatives fx, fy, fz throughout
some neighborhood of the point P0(x0, y0, z0). Let fx, fy and fz be continuous at P0. Then the
directional derivative at P0 exists for a unit vector v̂ = (vx, vy, vz) in the direction of v, such
that

To find the gradient along a line segment s

df

ds
=

df

dx︸︷︷︸
fx

dx

ds︸︷︷︸
vx

+
df

dy

dy

ds
+
df

dz

dz

ds

= fxvx + fyvy + fzvz

where f is expressed in terms of s, where s is a measure of directed distance along a vector and
the unit vector is v̂ = (vx, vy, vz). First set s = 0 at P0 = (x0, y0, z0).

To find f in this transformed space, we can write

x = x0 + vxs

y = y0 + vys

z = z0 + vzs

Note: we start at P0(x0, y0, z0) and attach a vector in the v̂(vx, vy, vz) direction with a magni-
tude of s
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Then

∂f

∂s
=

∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s
+
∂f

∂z

∂z

∂s

=
∂f

∂x
vx +

∂f

∂y
vy +

∂f

∂z
vz

= Dvf

= directional derivative in direction v

P  (x  ,y  ,z  )

P  (x  ,y  ,z  )

0

1

0

1

0

1

0

1

x

y

z

v

The directional derivative of f at P0 in the direction v can also be defined as the average rate of
change of f with respect to distance as P1 approaches P0 along s.

∂f

∂s
= lim

∆s→0

∆f

∆s
= lim

P1→P0

f(x1, y1, z1)− f(x0, y0, y0)√
(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2

This can be expressed as a scalar product of the gradient of f and the vector v.

Dvf = ∇f · v̂

this can be thought of as the projection of∇f onto the vector v.
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Tangent Lines and Tangent Planes

Reading
Trim 12.9−→ Tangent Lines and Tangent Planes

Assignment
web page−→ assignment #4

This is another application of the gradient.

The basic idea is that the∇f is perpendicular to a contour line in 2D and perpendicular to a level
surface in 3D. Therefore the∇f vector will be perpendicular to a tangent line or plane. We will
use this to find the tangent line or plane at a point.

z = 20e−x
2/100 cos

(πy
30

)

Find the plane tangent to the surface at point P (x = 5, y = 10).

one way is to use the Taylor series, keeping only the linear terms

z = 7.79− 0.78(x− 5)− 1.41(y − 10)

another way is to use the gradient ideas described above. We can write the equation of the hill as

F (x, y, z) = 20e−x
2/100 cos

(πy
30

)
− z

↪→ move z to the righthand side
if F = 0⇒ on surface
if F < 0⇒ outside
if F >⇒ inside

In 3D the level surface F = 0 defines the hill surface

∇F = î
∂F

∂x
+ ĵ

∂F

∂y
+ k̂

∂F

∂z

= î

[
20e−x

2/100
(
−

2x

100

)
cos

(πy
30

)]

+ĵ
[
20e−x

2/100 −
( π

30

)
sin

(πy
30

)]
+ k̂(−1)
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at P (5, 10, 7.79)

∇F |at P = î(−0.78) + ĵ(−1.41) + k̂(−1)

∇F |at P is perpendicular to the F = 0 surface and also perpendicular to a tangent plane at P .

We have:

• a point on the plane P (5, 10, 7.79)

• a vector normal to the plane ~N = ∇F

Therefore the equation of the tangent plane is

Nx(x− xP ) +Ny(y − yP ) +Nz(z − zP ) = 0

−0.78(x− 5)− 1.41(y − 10)− 1(z − 7.79) = 0

z = 7.79− 0.78(x− 5)− 1.41(y − 10)

This is the same as the Taylor series.

Tangent Plane : A(x− x0) +B(y − y0) + C(z − z0) = 0

Normal Line :
x− x0

A
=
y − y0

B
=
z − z0

C

where

A = fx(x0, y0), B = fy(x0, y0), C = −1
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Extrema of Functions

Reading
Trim 12.10−→ Relative Maxima and Minima

12.11−→ Absolute Maxima and Minima

Assignment
web page−→ assignment #5

Review of Functions of One Variable

The critical points are identified by the x-values where f ′ → 0 or where f ′ does not exist. We
apply the 2nd derivative test at these critical points:

P

P

P

P

1

2

3

4

y

x
a b

1. at P1: f ′ = 0 and f ′′ = 0

2. at P2: f ′ = 0 and f ′′ < 0

3. at P3: f ′ = 0 and f ′′ > 0

4. at P4: f ′ and f ′′ do no exist, i.e.→∞

The absolute max/min in the range a→ b is either at one of the critical points or at the end points
of the domain, Note: end points must be checked.

• we can see from the figure, that the absolute minimum in the range a → b is at f(a) and
that the absolute maximum in the range a→ b is at x = P2

• if the test fails, we can always plot up y = f(x) to see what it looks like

• sometimes it is easier to use plots or an understanding of the physics associated with the
problem to decide rather that formal tests

14



Functions of Two Variables

We will examine z = f(x, y) where∇f = 0, i.e. the “flat” portion of the curved surface. The
critical points are where

∂f

∂x
= 0

∂f

∂y
= 0

In this instance, the 2nd derivative tests involve
∂2f

∂x2
and

∂2f

∂y2
and

∂2f

∂x∂y
.

Possible max/min locations include:

1. Peak Shape: Relative maximum at
∂f

∂x
=
∂f

∂y
= 0

∂2f

∂x2
< 0 and

∂2f

∂y2
< 0

The x− and y−slopes are decreasing +ve to -ve

2. Bowl Shape: Relative minimum at
∂f

∂x
=
∂f

∂y
= 0

∂2f

∂x2
> 0 and

∂2f

∂y2
> 0

The x− and y−slopes are increasing -ve to +ve

3. Saddle Shape: “saddle point” at
∂f

∂x
=
∂f

∂y
= 0, there is no clear min or max at

∂f

∂x
=

∂f

∂y
= 0. It looks like a max in x and a min in y.

∂2f

∂x2
< 0 but

∂2f

∂y2
> 0

4. Bowl Shape on x and y axes, but decreasing in the s direction

This is where the
∂2f

∂x∂y
derivative comes in.

15



If the critical point is at P and

∂f

∂x

∣∣∣∣∣
P

= 0,
∂f

∂y

∣∣∣∣∣
P

= 0,

or either or both are undefined at P , then compute

A =
∂2f

∂x2

∣∣∣∣∣
P

B =
∂2f

∂x∂y

∣∣∣∣∣
P

C =
∂2f

∂y2

∣∣∣∣∣
P

D = B2 −AC

if D < 0 and A < 0 ⇒ relative max at P

if D < 0 and A > 0 ⇒ relative min at P

if D > 0 ⇒ saddle point at P

if D = 0 ⇒ test fails - plot to examine

To find the absolute max/min in the interval:

• check f(x, y) values at all critical points and on all the boundary points i.e. edges of the
interval

• the boundary points are more of an issue in 2D than the 1D case

Example 2.2

Find the max. or min. point for the function

z = f(x, y) = x2 + xy + y2

in the domain x2 + y2 ≤ 1.
x + y = 1

2 2

x

y

z

16



Method of Least Squares

Reading
Trim 12.13−→ Least Squares

Assignment
web page−→ assignment #6

We will demonstrate the method through example.

Given four data points from an experiment

xi 0 1 4 6
yi 2 3 3 1

whereN = 4 is the number of data points.

Fit the “best” quadratic curve through the data.

g(x) = A+Bx+ Cx2

The curve can take any form we want. Often, these is some physical basis to guide us in deter-
mining which form of the curve to use. Sometimes we might use trial and error for a few different
curve shapes.

y

y

x x x x

y
y

y1

1 2

2

3 4

2
3

4

x

0 1 4 6

parabola - g(x) = A + Bx + Cx

we want the "best" value

of A, B, and C to fit the

data points

The question remains - how good is the fit? At each xi data point, we must compute the difference

17



(residual). At xi

Ri = g(xi)︸ ︷︷ ︸
curve fit value at xi

− yi︸︷︷︸
data value at xi

The “best” curve would have minimum Ri summed over all data points. However, some Ri’s are
+’ve and some are -’ve. The cancellation effect can be misleading, giving a false indication of a
good fit. To avoid this, we need to square Ri, so all are +’ve. Therefore the “best” curve is based
on the minimumR2

i , summed over all points.

The sum of the square of the residuals is given as

S =
N∑
i=1

[g(xi)− yi]2 =
N∑
i=1

[
A+Bxi + Cx2

i − yi
]2

xi and yi are the given data points. The unknowns here areA,B,C. i.e. S = S(A,B,C). The
best fit will have the minimum value of S. For minimum S

∂S

∂A
= 0

∂S

∂B
= 0

∂S

∂C
= 0

We need to solve three equations to find
the best values for our three unknowns,
A,B,C.

The physical meaning of this is - on average,
a data point is 0.0464 away from the g(x)
curve - which is considered a good fit. (simi-
lar to a RMS type average).

y

x

0 1

1

2

3

4 6

g(x) = 2.035 + 1.114 x - 0.215 x

"best" parabola

for these data

The procedure can be used for any curve shape, however, it is sometimes convenient to change the
variable first.

If we want to fit the data xi and yi to g(x) = AeBx, it is easier to take the ln, i.e.

data xi, Yi = ln yi

ln g(x) = lnA+Bx

⇒ G(x) = A∗ +Bx

We will fit a lineA∗ +Bx to xi, Yi data.
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Multiple Integrals

Review of Single Integrals

Reading
Trim 7.1−→ Review Application of Integrals: Area

7.2−→ Review Application of Integrals: Volumes
7.3−→ Review Application of Integrals: Lengths of Curves

Assignment
web page−→

Planar Area

In the limit as ∆x→ dx the total number of panels→∞

A =
∫ b
a
y · dx =

∫ b
a
f(x)dx

Volume of Solid of Revolution

a) Disk Method : rotate y = f(x) about the
x− axis to form a solid.

y

x
a b

y=f(x)

rotate around

x-axis

x

The disk has a volume of V = πy2∆x.

The total volume between a and b can be de-
termined as:

V =
∫ b
a
πy2dx

Note: The value of y = f(x) is substituted
into the formulation for area and the resulting
equation is integrated between a and b.

1



b) Shell Method: Find a ring defined with ring area: 2πy · ∆y.

The volume of the ring is given by

∆V = (2πy ·∆y)∆x

The volume of the solid is determined by
solving the integral

V =
∫ R

0
2π x y dy

Either method can be used, which ever is
most convenient.

y

x
a b

y=f(x)

rotate around

x-axis

x

y

R

Surface Area of Solid of Revolution

y

x
a b

y

y=f(x)

arc length

rotate around

x-axis

x

s

• the arc length can be defined using
Eq. 7.15:

∆s =

√√√√1 +

(
dy

dx

)2

∆x

=

√
dx2 + dy2

dx
∆x

• rotate about the x− axis, where the
surface area is defined as

∆Asurf = 2πy∆s

• the total surface area is given as

Asurface =
∫ b
a

2πy

√√√√1 +

(
dy

dx

)2

dx

Example: 3.1

Find the area in the positive quadrant bounded by

y =
1

4
x and y = x3

2



Example: 3.2

Find the volume of a cone with base radius R and height h, rotated about the x axis using
the disk method.

y y

z

x

x

y
R

h

Example: 3.3

Find the volume of a cone with base radius R and height h, rotated about the x axis using
the shell method.

y

z

x

y

y

ring

Example: 3.4

Find the surface area of a cone with base radiusR and height h, rotated about the x axis.

y y

y

z

x

x

As

x

s

s

y=R-R x
h

3



Double Integrals

Reading
Trim 13.1−→ Double Integrals and Double Iterated Integrals

13.2−→ Eval. of Double Integrals by Double Iterated Integrals
13.7−→ Double Iterated Integrals in Polar Coordinates

Assignment
web page−→ assignment #7

Cartesian Coordinates

Find the area in the +’ve quadrant

bounded by y =
1

4
x and y = x3.

The basic area element in 2D is

∆A = ∆x ·∆y

We can build this area up into a strip by
summing over ∆y, keeping x fixed.

1/8

1/2
x

y
y=x

y = 1/4 x

y

x

3

A at arbitrary (x, y)

region -

∆Astrip =

1/4x∑
y=x3

∆y


fixed x

∆x

Sum up all ∆x strips to get the total area

A =
1/2∑
x=0

1/4x∑
y=x3

∆y

∆x

In the limit as ∆x→ dx and ∆y → dy we get a double integral as follows

A =
∫ 1/2

x=0

(∫ 1/4x

y=x3
dy

)
dx

4



Polar Coordinates

In Cartesian coordinates our area element was ∆A = ∆x∆y, which in differential form gave us

r

r

r

x

y

A = r   r

A =
∫ ∫
R
dxdy

We can change the principal coordinates into polar
coordinates by transforming x and y into r and θ.

r =
√
x2 + y2

θ = tan−1(y/x)

The Polar coordinate area element becomes

∆A = r∆r∆θ

when integrated becomes

A =
∫ ∫
R
rdrdθ

Example: 3.6

Find the area in the +’ve quadrant bounded by 2 circles

1

1-1 0 2

area A to be

found -

x2 + y2 = 1

(x− 1)2 + y2 = 1

5



Surface Areas from Double Integrals

Reading
Trim 13.3−→ Areas and Volumes of Solids of Revolution

13.6−→ Surface Area

Assignment
web page−→ assignment #7

area element

A =   x   y  in

surface  z = f(x,y)

surface area element

S

projection

in (x, y) plane

x

y

z

xy

A

n

k

S
^

^

How is ∆S related to ∆A? Imagine shining a light vertically down through ∆S to get ∆A.

1. the surface is defined as z = f(x, y)

2. redefine as F = z − f(x, y) where the surface is given as F = 0
- F > 0 and F < 0 will the regions above and below the surface, respectively

3. the gradient of the function F is given as

∇F =

(
−
∂f

∂x
,−
∂f

∂y
, 1

)

∇F is the perpendicular to the surface and the perpendicular to the tangent planes

~n = ∇F

6



4. get the unit normal vector as follows

n̂ =
∇F
|∇F |

=

−î
∂f

∂x
− ĵ

∂f

∂y
+ k̂√√√√(∂f

∂x

)2

+

(
∂f

∂y

)2

+ 1

5. find the component of the ∆S surface projected onto k̂

from Trim 12.5 we know that

∆A = cos θ∆S

Note, when θ = 0 ⇒ ∆A = ∆S (this is the surface parallel to the xy plane.

n

n

k

k

S

A

In general,

∆A = cos θ︸ ︷︷ ︸
n̂·k̂

∆S

n̂ · k̂ = |n̂||k̂| cos θ = cos θ

∆A = ∆S(n̂ · k̂) = ∆S
1

|∇F |

since n̂ · k̂ produces a numerator of k̂ · k̂ = 1 and a denominator of |∇F |

Rearranging the above equation, we can solve for ∆S. In the limit

dS =

√√√√1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

︸ ︷︷ ︸
|∇F |

dxdy︸ ︷︷ ︸
dA

Given the surface z = f(x, y), the surface area is

S =
∫ ∫
Rxy

√√√√1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

dxdy

whereRxy is the projection of the f(x, y) surface down onto the (x, y) plane.

While this is the most common form of the equation, we could also find S by projecting onto
another coordinate plane. Sometimes it is more convenient to do it this way. See Trim 14.6 for
applicable equations.
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Example: 3.7

Find the surface area in the +’ve octant for z = f(x, y) = 4− x− 2y.

x

y

4

4

2

plane

y = 2-x/2

xy

Example: 3.8

Given the sphere, x2 + y2 + z2 = a2, derive the formula for surface area.

Example: 3.9

Find the volume formed in the +’ve octant between the coordinate planes and the surface

z = f(x, y) = 4− x− 2y

x

y

4

4

2

plane

y = 2-x/2

xy

8



Example: 3.10a

Find the mean value of y = f(x) = sinx in the domain x = 0 to x = π.

Example: 3.10b

Find the mean value of temperature for T = f(x, y) = 4− x− 2y.

x

y

4

2

T of plate at (x,y)

= f(x,y)

plate  x=0, y=0, y=2-x/2

Example: 3.10c

Derive the formula for the volume of revolution. for the following sphere:

x2 + y2 + z2 = a2.

x

y

z

x  + y  = a

x=0

y=0

region

surface  z = f(x,y)

a

a

a

2 2 2

xy

9



Triple Integrals

Reading
Trim 13.8−→ Triple Integrals and Triple Iterated Integrals

13.9−→ Volumes

Assignment
web page−→ assignment #8

Volume Calculations in Cartesian Coordinates

The triple integral can be identified as

∫ ∫ ∫
V

dx dy dz︸ ︷︷ ︸
dV − volume element

or
∫ ∫ ∫

V
f dx dy dz

add up the dV elements in x, y, z directions, i.e. a triple sum.

Consider the solid defined by x2 + z2 = 4 in the positive octant. Find the volume of this solid
between the coordinate planes and the plane y + z = 6.

x

y

z

plane y + z = 6

2

2

6

6

x  +  z  =  4

cylinder x  + z   = 42

2

2

2

volume    to be found
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Start with a volume element at arbitrary
(x, y, z) in space inside dV

dV = dx dy dz

Build up a column - sum over y keeping
x, z constant.

y=0 y = 6-z

sum over dy

column volume =
(∫ 6−z

y=0
dy
)
dxdz

Build up a slice - sum columns over z, keeping y, x
fixed.

sum

column

over

dz

slice volume =

∫ √4−x2

z=0

(∫ 6−z

y=0
dy
)
dz

 dx
Finally sum the slices over x

V =
∫ 2

0

∫ √4−x2

0

∫ 6−z

0
dydzdx

Evaluation of the integral gives

V =
∫ 2

0

∫ √4−x2

0
(6− z)dzdx =

∫ 2

0
6
√

4− x2 −
(
√

4− x2)2

2
dx

= 6
∫ 2

0

√
4− x2dx−

1

2

∫ 2

0
(4− x2)dx = 6π −

8

3
≈ 16.18 use tables if necessary

Example: 3.11

Find the volume of the paraboloid, z = x2 + y2 for 0 ≤ z ≤ 4. Consider only the +’ve
octant, i.e. 1/4 of the volume.

x

y

z

x sum

2

2

4
z = x  +  y   surface2 2

2 2

projection onto (x,y) plane

x   +   y   = 4

11



Volume Calculations in Cylindrical and Spherical Coordinates

Reading
Trim 13.11−→ Triple Iterated Integrals in Cylindrical Coordinates

13.12−→ Triple Iterated Integrals in Spherical Coordinates

Assignment
web page−→ assignment #8

Cylindrical Coordinates

point: P (r, θ, z) i.e. polar in x, y plane plus z

volume element: dV = r dr dθ dz

based on links to Cartesian coordinates

r =
√
x2 + y2

θ = tan−1(y/x)

z = z

or
x = r cos θ

y = r sin θ

z = z

where 0 ≤ r, z ≤ ∞ and 0 ≤ θ ≤ 2π

Typically we build up column, wedge slice and then the total volume, given as
∫ ∫ ∫

rdrdθdz

The math operations are easier when we have axi-symmetric systems, i.e. cylinders and cones

Spherical Coordinates

rr sinf

f

f

dr

dA

r sin   d

rd

f f

dV = dA x dr

= r sin   dr d   d
2

point: P (r, θ, φ)

volume element: dV = (r sinφdφ)︸ ︷︷ ︸
height

rdrdθ︸ ︷︷ ︸
area

based on links to Cartesian coordinates

12



r =
√
x2 + y2 + z2

θ = tan−1(y/x)

φ = cos−1

(
z

√
x2 + y2 + z2

) or
x = r sinφ cos θ

y = r sinφ sin θ

z = r cosφ

where 0 ≤ r ≤ ∞; 0 ≤ θ ≤ 2π; 0 ≤ φ ≤ π. Note: for 0 ≤ φ ≤ π the sinφ is always +’ve
for dV +’ve.

The solution procedure involves building up columns, slices as before to obtain the total volume,
given as

∫ ∫ ∫
r2 sin φ dr dθ dφ

Example: 3.12

Find the volume bounded by a cylinder,

x2 + y2 = a2

and a paraboloid,

z = x2 + y2

z

y

x

z = x + y
2 2

x + y = a
2 2 2

a
a

Spherical Coordinate Example

Example: 3.13

Derive a formula for the volume of a sphere with radius, a

x2 + y2 + z2 = a2

13



Moments of Area/ Mass / Volume

Reading
Trim 13.5−→ Centres of Mass and Moments of Inertia

13.10−→ Centres of Mass and Moments of Inertia

Assignment
web page−→ assignment #9

Centroids, Centers of Mass etc.

2-D case: thin plate of constant thickness

Sometimes, single integrals work, as in a 2-D case, where the thickness is given as t and is constant
or a function of position as t(x, y). The material density is given as ρ (kg/m3), again constant
or a function of position as ρ(x, y). We sometimes use the mass per unit area of the plate, ρ∗ =
ρ · t (kg/m2).

area mass

basic element dA = dx dy dM = ρ t dx dy or ρ∗ dx dy

total area A =
∫ ∫
R dx dy M =

∫ ∫
R dM =

∫ ∫
R ρ t dx dy

first moment of area first moment of mass
(weight by distance from axis)

about y− axis x dA = x dx dy x dM = xρ t dx dy

total Fy =
∫ ∫
R x dA

∫ ∫
R x dM

about x− axis Fx =
∫ ∫
R y dA

∫ ∫
R y dM

centroid coordinates center of mass coordinates

x =

∫ ∫
R x dA

A
xc =

∫ ∫
R x dM

M

y =

∫ ∫
R y dA

A
yc =

∫ ∫
R ydM

M

second moments ∫ ∫
R x

2 dA
∫ ∫
R x

2 dM∫ ∫
R y

2 dA
∫ ∫
R y

2 dM
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3-D case:

We use the same basic ideas but the basic element is now V = dxdydz

2-D Objects

x

y
region

plate of thickness t

area element dA
volume is t dA

mass is   (x,y) t dA

Quantities of interest in applications such as dynamics.
Area: A =

∫ ∫
R dA (V olume = tA)

Mass: M =
∫ ∫
R ρ(x, y)tdA

where ρ(x, y) = density of material in (kg/m3)
at point (x, y)

Centroid = “geometrical center” of object

x =

∫ ∫
R xdA

A

1st moment of area
about y− axis

y =

∫ ∫
R ydA

A

1st moment of area
about x− axis

Center of Mass: useful in dynamics
problems

xc =

∫ ∫
R xdm

M
=

∫ ∫
R xρ(x, y)tdA

M

yc =

∫ ∫
R ydm

M
=

∫ ∫
R yρ(x, y)tdA

M

Note: that if the object density is uniform, then the cen-
troid and center of mass are the same.

2nd Moments of Area and Mass:
−→Moments of Inertia
2nd moment of area about: y − axis
Iy =

∫ ∫
R x

2dA
2nd moment of mass about: y − axis
Iy =

∫ ∫
R x

2ρ(x, y)tdA
(similar formulas for Ix about the x− axis)

3-D Objects

volume

d    at arbitrary (x,y,z)

mass is    (x,y,z) d

projection onto (x,y) plane defines xyx

y

z
V

V

V

Quantities of interest in applications such as dynamics.
Volume: V =

∫ ∫ ∫
V dV

Mass: M =
∫ ∫ ∫

V ρ(x, y, z)dV
where ρ(x, y, z) = density of material in
(kg/m3) at point (x, y, z)

Centroid = “geometrical center” of object

x =

∫ ∫ ∫
V xdV
V

1st moment of volume
about y − z plane

y =

∫ ∫ ∫
V ydV
V

1st moment of volume
about x− z plane

z =

∫ ∫ ∫
V zdV
V

1st moment of volume
about x− y plane

Center of Mass: useful in dynamics
problems

xc =

∫ ∫ ∫
V xρ(x, y, z)dV

M

similar formulas for yc and zc

2nd Moments of Area and Mass:
−→ Polar Moments of Inertia
volume moment about: y − axis
Jy =

∫ ∫ ∫
V(x

2 + z2)dV
mass moment about: y − axis
Jy =

∫ ∫ ∫
V(x

2 + z2)ρ(x, y, z)dV
(similar formulas for Jx about the x− axis)

and

(similar formulas for Jz about the z − axis)
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Example: 3.14

Find the centroid, center of mass and the 1st moment of mass for a quarter circle of radius
a with an inner circle of radius a/2 made of lead with a density of ρ1 = 11, 000 kg/m3

and an outer circle of radius amade aluminum with a density of ρ2 = 2, 500 kg/m3. The
thickness is uniform throughout at t = 10mm.

x

y

a

a

a/2

a/2

x  + y  = a2 2 2

1

2 ρ∗1 = 11 g/cm2 = 110 kg/m2

ρ∗2 = 2.5 g/cm2 = 25 kg/m2

Example: 3.15

Find the area of the paraboloid z = x2 + y2 below the plane z = 1

Example: 3.16

Find the moment of inertia about the y− axis of the area enclosed by the cardioid
r = a(1− cos θ)

Example: 3.17

Find the center of gravity of a homogeneous solid hemisphere of radius a
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Vector Calculus

Vector Fields

Reading
Trim 14.1−→ Vector Fields

Assignment
web page−→ assignment #9

Chapter 14 will examine a vector field.

For example, if we examine the temperature condi-
tions in a room, for every point P in the room, we
can assign an air temperature, T , where

T = f(x, y, z)

This is a scalar function or scalar field.
x

y

z

P

However, suppose air is moving around in the room and at every point P , we can assign an air
velocity vector, ~V (x, y, z), where

~V (x, y, z) = î u(x, y, z) + ĵ v(x, y, z) + k̂ w(x, y, z)

where the right side of the above equation consists of
x, y, z components at a point, with each component
being a function of (x, y, z). To describe ~V in the
room, we need to keep track of the 3 scalar function,
u, v, w at each f(x, y, z).

~V (x, y, z) is a vector function or a vector field.
x

y

z

1



Gradient, Divergence and Curl Operations

The basic operator is the del operator given as

2D

∇ = î
∂

∂x
+ ĵ

∂

∂y

3D

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

The del operator operates on a scalar function, such as T = f(x, y, z) or on a vector function,
such as ~F = îP + ĵQ+ k̂R (force) or ~V = îu+ ĵv + k̂w (velocity).

We will examine three operations is more detail

1. gradient:∇ operating on a scalar function

Examples include the temperature in a 2D plate, T = f(x, y)

∇T = î
∂f

∂x
+ ĵ

∂f

∂y

or for a 3D volume, such as a room

∇T = î
∂f

∂x
+ ĵ

∂f

∂y
+ k̂

∂f

∂z

The physical meaning was given in Chapter 13. ∇T is a vector perpendicular to the T
contours that points “uphill” on the contour plot or level surface plot.

2. divergence:∇ dotted with a vector function→ ∇ · ~V
We can define the velocity in a 3D room as

~V (x, y, z) = îu(x, y, z) + ĵv(x, y, z) + k̂u(x, y, z)

DIVERGENCE of ~V = div ~V = ∇ · ~V

∇ · ~V =

(
î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)
·
(̂
iu+ ĵv + k̂w

)
=
∂u

∂x
+
∂v

∂y
+
∂w

∂z

The DIVERGENCE of a vector is a scalar.

2



3. curl: the vector product of the del operator and a vector,∇× ~V , produces a vector

curl of ~V = curl ~V = ∇× ~V

∇× ~V =

(
î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)
×
(̂
iu+ ĵv + k̂w

)

≡

∣∣∣∣∣∣∣∣∣
î ĵ k̂
∂

∂x

∂

∂y

∂

∂z
u v w

∣∣∣∣∣∣∣∣∣

= î

∂w∂y − ∂v

∂z︸ ︷︷ ︸
V1

 + ĵ

∂u∂z − ∂w

∂x︸ ︷︷ ︸
V2

 + k̂

∂v∂x − ∂u

∂y︸ ︷︷ ︸
V3


= î V1 + ĵ V2 + k̂ V3

The 3D case gives

curl ~V = î

∂w∂y − ∂v

∂z︸ ︷︷ ︸
V1

 + ĵ

∂u∂z − ∂w

∂x︸ ︷︷ ︸
V2

 + k̂

∂v∂x − ∂u

∂y︸ ︷︷ ︸
V3



The 2D case gives

curl ~V = k̂

(
∂v

∂x
−
∂u

∂y

)

4. Laplacian: (∇ · ∇) operation.

A primary example of the Laplacian operator is in determining the conduction of heat in a
solid. Given a 3D temperature field T (x, y, z), the Laplacian is

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂x2
= 0

3



2D example

Consider a 2D heat flow field, ~q(x, y).

Look at a small differential element, ∆x∆y. In steady state, heat flows in is equivalent to
heat flow out. Therefore

∇ · ~q = 0 (1)

But ~q is related to temperature by Fourier’s law

~q = −k∇T (2)

Combining (1) and (2)

∇ · (−k∇T ) = 0→ ∇2T = 0

This is Laplace’s equation in 2D, which gives the steady state temperature field.

Example 4.1

Show for the 3D case f(x, y, z) that curl grad f = 0

∇f = î
∂f

∂x
+ ĵ

∂f

∂y
+ k̂

∂f

∂z

holds for any function f(x, y, z), for instance

f(x, y, z) = x2 + y2 + y sinx+ z2

4



Conservative Force Fields and the curl grad f = 0 identity

Suppose we have a conservative field ~F (x, y, z). We know ~F is irrotational, i.e.

∇× ~F = 0 (1)

(zero work in a closed path in the field)

But the identity says

∇× (∇φ) = 0 (2)

always holds when φ(x, y, z) is a scalar function.

Comparing (1) and (2)→ for a Conservative Force Field, we can always find a scalar function
φ(x, y, z) such that

~F = ∇φ

where φ is called the scalar potential function.

Sometimes, for convenience, we introduce a negative sign

~F = −∇u

The following statements are equivalent

~F is a conservative ⇐⇒ net work when a particle moves through
force field ~F around a closed path in space is zero

⇐⇒ ∇× ~F = 0 irrotational

⇐⇒ a scalar function φ(x, y, z) can be found such that
~F = ∇φ or a function u(x, y, z) can be found
such that ~F = −∇u

5



Line Integrals of Scalar Functions

Reading
Trim 14.2−→ Line Integrals

Assignment
web page−→ assignment #10

One place that line integrals often come up is in the computation of averages of a function.

2D Case

x

2

2

f

L

f =
1

L

∫ L
x=0

f(x)dx

3D Case

The temperature in a room is given by T =
f(x, y, z). A curve C in the room is given
by x(t), y(t) and z(t). If we measure tem-
perature along curve C, what is the average
temperature T ?

T =
1

L

value of f along C︷ ︸︸ ︷∫
C
f(x, y, z)

arc length of C︷︸︸︷
dS︸ ︷︷ ︸

line integral along C

L

x

y

z

t=0
(S=0)

(S=L)
t=

Calculation of the line integral along C

∫ α
t=0

f [x(t), y(t), z(t)]︸ ︷︷ ︸
f values along C

√√√√(dx
dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

︸ ︷︷ ︸
dS along C

dt

6



Example 4.2

Given a 3D temperature field

T = f(x, y, z) = 8x+ 6xy + 30z

find the average temperature, T along a line from (0, 0, 0) to (1, 1, 1).

1. if we have an explicit equation for a planar curve

C : y = g(x)

we can reduce∫
C
fdS to

∫
fnc of x dx or

∫
fnc of y dy

we do not have to always use the parametric equations.

2. value of
∫
C
f dS depends on

(i) function f

(ii) curve C in space

(iii) direction of travel

∫ B
A
f dS = −

∫ A
B
f dS

3. notation - sometimes C is a closed loop in space

CCW
CWC C

f dS f dS
c c

• evaluate once around the loop
CCW or CW

• evaluation method is the same
as the example

7



Example: 4.3a

Suppose the temperature near the floor of a room (say at z = 1) is described by

T = f(x, y) = 20−
x2 + y2

3
where −5 ≤ x ≤ 5

−4 ≤ y ≤ 4

What is the average temperature along the straight line path fromA(0, 0) toB(4, 3).

Example: 4.3b

What is the average room temperature along the walls of the room?

T =

∮
C
f(x, y)dS∮
C
dS

where the closed curve C is defined in 4 sections

C1 y = −4 x = t −5 ≤ t ≤ 5

C2 x = 5 y = t −4 ≤ t ≤ 4

C3 y = 4 x = 5− t 0 ≤ t ≤ 10

C4 x = −5 y = 8− t 0 ≤ t ≤ 8

Example: 4.3c

What is the average temperature around a closed circular path→ x2 + y2 = 9?

where C is a closed circular path

T =

∮
C
f(x, y)dS∮
C
dS

where x(t) = 3 cos t

y(t) = 3 sin t

for 0 ≤ t ≤ 2π.

8



Line Integrals of Vector Functions

Reading
Trim 14.3−→ Line Integrals Involving Vector Functions

14.4−→ Independence of Path

Assignment
web page−→ assignment #10

Let’s examine work or energy in a force field.

W = ~F · ~d

Now consider a particle moving along a curve C is a 3D force field.

W =
∫
C

~F (x, y, z)︸ ︷︷ ︸
force value evaluated along C

· d~r︸︷︷︸
displacement along C

(1)

This is a line integral of the vector ~F along the curve C in 3D space.

In component form:

~F = îP + ĵQ+ k̂R

d~r = îdx+ ĵdy + k̂dz

W =
∫
C
Pdx+Qdy +Rdz (2)

Equations (1) and (2) are equivalent.

Use the equation of curve C (either in an explicit form, i.e. y = f(x) etc., or in a parametric

form) to reduce (2) to
∫ α
t=0
g(t)dt or

∫ β
x=n

h(x)dx etc.

Example 4.4

Given a force field in 3D:

~F = î(3x2 − 6yx) + ĵ(2y + 3xz) + k̂(1− 4xyz2)

What is the work done by ~F on a particle (i.e. energy added to the particle) if it moves in a
straight line from (0, 0, 0) to (1, 1, 1) through the force field.

9



Notes

1. If we have an explicit equation for the curve, we can sometimes reduce to a form
∫

(fnc of x) dx

etc. There is no need for parametric equations.

2. The work termW can be either +’ve or -’ve.

In a +’ve form,
∫
~F and

∫
d~r, are in the same direction, where the work done by the force

energy is added to the object by ~F .

In the -’ve form, ~F opposes the displacement. The energy is removed from the object.

+’veW =
∫
C
~F · d~r

3. closed path notation

W =
∮
CCW

~F · d~r once CCW around loop

W =
∮
CW

~F · d~r once CW around loop

4. A special case is the conservative force field

∮
~F · d~r = 0

We know that∇× ~F = 0. There is no work in a closed loop.

We also know that∇φ = F , which is integrated gives

∫
C

~F · d~r = φ1 − φ2

Therefore for a conservative force field, the work is a function of the end points not the path.

This is the same for any C connecting the same 2 end points.

W is always the same number if ~F is conservative.

10



Example: 4.5a

The gravitational force on a mass,m, due to mass,M , at the origin is

~F = −G
Mm~r

|~r|3
= −K

~r

|~r|3
where K = GMm

The vector field is given by:

~F (x, y, z) = îP + ĵQ+ k̂R where P = −
Kx

(x2 + y2 + z2)3/2

Q = −
Ky

(x2 + y2 + z2)3/2

R = −
Kz

(x2 + y2 + z2)3/2

Compute the work, W , if the mass, m moves from A to B along a semi-circular path in
the (y, z) plane:

y2 + z2 = 16y or z =
√

16y − y2 and x = 0

From A(0, 0.1, 1.261) to
B(0, 16, 0)

A B

x

y

M

z

m

curve C in the x=0 plane

(xz plane) - circle, radius 8

center (0,8,0)

Example: 4.5b

Find the work to move through the same field, but following a straight line path from
A(0, 0.1, 1.261) toB(0, 16, 0).

A

B

x

y

M

z
m curve C

11



Conservative Force Fields

Reading
Trim 14.5−→ Energy and Conservative Force Fields

Assignment
web page−→ assignment #10

Given a flow field in 3D space

~F = î (2xz3 + 6y)︸ ︷︷ ︸
P

+ĵ (6x− 2yz)︸ ︷︷ ︸
Q

+k̂ (3x2z2 − y2)︸ ︷︷ ︸
R

Part a: Is the force field, ~F , conservative?

Check to see if∇× ~F = 0 (i.e. irrotational ~F ?)

Part b: Compute the work done on an object if it goes around a CCW circular path of radius 1
for center point P (2, 0, 3) with form

Part c: Find the scalar potential function φ(x, y, z)

~F = ∇φ

Part d: Use φ to verify part b).

W =
∮
~F · d~r =

∮
∇φ · d~r

Part e:

Find the work done if the object moves along C fromA(0, 0, 0) toB(3, 4,−2) within ~F .

12



Surface Integrals of Scalar Functions

Reading
Trim 14.7−→ Surface Integrals

Assignment
web page−→ assignment #11

x

y

z
surface z=g(x,y)

surface area dS

dA = dx dy
projection

xyprojection         in (x,y) plane

surface area of z = g(x, y)

S =
∫ ∫
Rxy

√√√√1 +

(
∂g

∂x

)2

+

(
∂g

∂y

)2

dxdy

Now suppose the surface z = g(x, y) is
within a 3D temperature field

T = f(x, y, z)

What is the average temperature measured over the surface z = g(x, y)?

Add up T for each dS area element and divide by the total area of S to get the average.

T =

∫ ∫
S
f(x, y, z)dS

Area of S

The numerator is called the surface integral of f(x, y, z) over the surface S (i.e. z = g(x, y)).

To evaluate

∫ ∫
S
fdS =

∫ ∫
Rxy

f [x, y, g(x, y)]︸ ︷︷ ︸
T values on the surface

√√√√1 +

(
∂g

∂x

)2

+

(
∂g

∂y

)2

dxdy︸ ︷︷ ︸
dS area element

This becomes

∫ ∫
Rxy

F (x, y)dxdy

13



Notes

1. sometimes it is easier if we switch to polar coordinates

∫ ∫
Rxy

F (x, y)dxdy →
∫ ∫
Rxy

H(r, θ)rdrdθ

where x = r cos θ and y = r sin θ.

2. notation = we have a closed surface in space, i.e. a sphere surface

g(x, y)→ z =
√
a2 − x2 − y2

∮ ∮
S
f(x, y, z)dS

Example: 4.6

Suppose the temperature variation (same for all (x, y)) in the atmosphere near the ground
is

T (z) = 40−
z2

5

where T is in ◦C and z is inm. Look at a cylindrical building roof as follows:

x

z

30 m long

10 m high

10 m

What is the air temperature in contact with the roof?

14



Surface Integrals of Vector Functions

Reading
Trim 14.8−→ Surface Integrals Involving Vector Fields

Assignment
web page−→ assignment #11

Given a full 3D velocity field, ~V (x, y, z) in space (i.e. air flow in a room).

Given some surface z = g(x, y) within the flow→ calculate the flow rate Q (m3/s) crossing
the surface S, we can write G = z − g(x, y), where G is a constant since the surface is a level
surface or a contour.

dS at (x,y,z)

surface z=g(x,y)

or

G(x,y,z) = z - g(x,y) = 0

V

The basic idea is to consider the element dS of the surface at some arbitrary (x, y, z). Then
compute the unit normal vector to dS

n̂ = (±)
∇G
|∇G|

This will vary over S. The (±) will be controlled by the direction of the flow.

The flow across dS is (~V · n̂)︸ ︷︷ ︸
component normal to surface

dS.

Add up over all dS elements to get the total flow across the surface

Q =
∫ ∫

S

~V · n̂ dS

15



This is called the surface integral of the vector field ~V over the surface S defined by
z = g(x, y).

The actual evaluation is similar to the last example.

• ~V · n̂ will end up giving some integrand function f

• project dS onto (x, y) plane

dS =

√√√√1 +

(
∂g

∂x

)2

+

(
∂g

∂y

)2

dxdy

Q =
∫ ∫
Rx,y

f(x, y)

√√√√1 +

(
∂g

∂x

)2

+

(
∂g

∂y

)2

dxdy

• then proceed as before.

Example: 4.7

Given a velocity field in 3D space

~V = î(2x+ z) + ĵ(x2y) + k̂(xz) find

a) the flow rateQ (m3/s) across the surface z = 1 for
0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 in the +’ve z direction

b) the average velocity across the surface

z

x

y

1

1

1

xy

dS
surface S

16



Integral Theorems Involving Vector Functions

We will examine vector functions in 3D:

Force Field: ~F (x, y, z) = îP + ĵQ+ k̂R

Vector Field: ~V (x, y, z) = îu+ ĵv + k̂w

We have defined 2 types of integrals for such functions.

Line Integrals

z

y

x

C

F

∫
C

~F · d~r =
∫
C
Pdx+Qdy +Rdz

This can be interpreted as work done by ~F field on
an object that moves along C within the field.

Surface Integrals

z

y

x

S

V

∫ ∫
S

~V · n̂ dS

This can be interpreted as the flow across surface S
in the n̂ direction due to the ~V field.

There are three theorems which state identities involving these types of integrals.

17



1. Divergence Theorem

z

y

x

V field in 3D space

closed surface S enclosing

volume      (on RHS)

Also called Green’s theorem in space - this is the 2nd
vector form of Green’s theorem.

∮ ∮
S

~V · ~n dS =
∫ ∫ ∫

V
(∇ · ~V )dV

where

~V = velocity field

V = volume

2. Stokes Theorem
Also called 1st vector from of Green’s
theorem.

∮
C

~F · d~r =
∫ ∫

S
(∇× ~F ) · n̂ dS

where the surface S is any surface in 3D with
C as a boundary.

x

y

z

C

F defined in 3D space

closed curve C

in 3D space

3. Greens Theorem

This is essentially a 2D statement of Stoke’s the-
orem, where in 2D

~F = îP + ĵQ

∇× ~F = k̂

(
∂Q

∂x
−
∂P

∂y

)
x

y
C

F defined in 2D space

∮
C
Pdx+Qdy =

∫ ∫
R

(
∂Q

∂x
−
∂P

∂y

)
dxdy

18



Divergence Theorem

Reading
Trim 14.9−→ The Divergence Theorem

Assignment
web page−→ assignment #11

Trim in section 14.9 has a detailed proof of the Divergence Theorem. They try to interpret the
meaning of

∮ ∮
S

~V · n̂dS =
∫ ∫ ∫

V
(∇ · ~V )dV

This equation applies for any vector function ~V , but is used most for velocity fields in fluids. When
we consider ~V , the theorem concerns net outflow to inflow (m3/s) for a region in space (like a
sphere).

The left side of the equation is a surface integral of V over a closed surface, S in 3-D space with
n̂ being the outward normal to each dS.

We recall that ~V · n̂dS gives the flow rate (m3/s). When we add this up over the entire surface
(as in the LHS of the equation) we obtain the net flow rate crossing the closed surface.

i.e.

net outward flow(m3/s)− net inward flow(m3/s)

The right hand side of the equation is a calculation of ∇ · ~V for each differential volume, dV
inside the surface S. We then add them all up.

For the differential volume, V

inflow (m3/s) = u(x) · area+ v(y)(∆x)(∆z)

outflow (m3/s) = u(x+ ∆x) · (∆y)(∆z) + v(y + ∆y)(∆x)(∆z)

The net flow is then

outflow − inflow = (∆x)(∆y)(∆z)

[
u(x+ ∆x)− u(x)

∆x
+
v(y + ∆y)− v(y)

∆y

]

19



= (dV)

(
∂u

∂x
+
∂v

∂y

)

= (∇ · ~V )dV

Therefore the RHS (∇ · ~V )dV gives the net outflow minus inflow for a volume element dV .

The integral
∫ ∫ ∫

V , adds up the differential flow for all volume elements, dV inside of surface S.
There is a cancellation of terms because the outflow from one ∆V becomes the inflow to the next
volume.

When we sum over all ∆V , we are left with the difference between the inflow and the outflow at
the boundaries of the volume.

∮ ∮
S

~V · ~ndS =
∫ ∫ ∫

V
(∇ · ~V )dV

outflow − inflow(m3/s) triple sum of all outflow − inflow

across boundary surface for ∆V volumes inside

S of volume V in 3D space the volume V in 3D space

Example: 4.8

Given

~V = î(1 + x) + ĵ(1 + y2) + k̂(1 + z3)

verify the divergence theorem for a cube, where 0 ≤ x, y, z ≤ 1 i.e. show that∮ ∮
S

~V · n̂dS =
∫ ∫ ∫

V
(∇ · ~V )dV

where

S = cube surface (closed)
V = interior volume of the cube

20



Stoke’s Theorem

Reading
Trim 14.10−→ Stoke’s Theorem

Assignment
web page−→ assignment #11

The formal proof is offered in Trim 14.10.

∮
C

~F · d~r =
∫ ∫

S
(∇× ~F ) · n̂ dS

This has a similar meaning to Green’s theorem but now in 3D space instead of a plane.

x

y

z

C

F

~F (x, y, z) is a 3D force field. The LHS of the equa-
tions is the work done when the object moves once
in a CCW direction along the path C in 3D.
The RHS is the work computed over a surface inte-
gral

∫ ∫
S .

Like Greens theorem, it works because of the interior cancellations of work, when we move around
a surface element dS inside C.

Note: the unit normal, n̂ for the LHS is based on a right hand rule as follows.

dS

dS

dS

n

n

n

C

any surface S in 3D

with C as the boundary

if CCW on C

if CW on C

^

^

^

The work on all internal surfaces cancel, leaving only the surface work in the CCW direction.
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Example: 4.9

Given: ~F = îx+ ĵ2z + k̂y (a force field in 3D).

The closed path C is given by the intersection of:

x2 + y2 = 4

z = 4− x− y

The object moves once in a CW direction around C starting at (2, 0, 2).

Verify Stoke’ theorem:∮
C

~F · d~r =
∫ ∫

S
(∇× ~F ) · n̂ dS

22



Green’s Theorem

Reading
Trim 14.6−→ Green’s Theorem

Assignment
web page−→ assignment #10

The theorem involves work done on an ob-
ject by a 2D force field. The 2D force field
is given by

F (x, y) = îP (x, y) + ĵQ(x, y) x

y

P

Q F

C

We will examine an object that moves once CCW around a loop in ~F . The region inside the loop is
defined asR. The normal vector for the regionR is k̂ (outwards) to the right for a CCW motion
of C. The theorem states

∮
C
Pdx+Qdy =

∫ ∫
R

(
∂Q

∂x
−
∂P

∂y

)
dxdy

The left hand side of the equation,
∮
C

~F · d~r in 2D

is the work done by the field ~F on the object as it
moves on C. This consists of force times distance
for each d~r added up over C.

F

dr

The right hand side of the equation,
∫ ∫
R

(∇× ~F )·

k̂dxdy in 2D gives the direction of travel on C for
the work given by the LHS. Maps movement of an
element ∆x∆y as it moves around fromA toA.

x

y

P

Q F

x x +   x

y +   y

y A

k
^

out
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The force component times the distance for each side
gives the work done. Q

P

Q

P

at x+  x

at y+  y

at x

at y

A

Work = Q|at x+∆x ∆y − P |at y+∆y ∆x− Q|at x ∆y + P |at y ∆x

= (∆x∆y)

[
Q|at x+∆x − Q|at x

∆x
−
P |at y+∆y − P |at y

∆y

]

In the limit, the work done by ~F to move the object CCW around dxdy area is

(
∂Q

∂x
−
∂P

∂y

)
dxdy

Now we can sum up for all dxdy elements inside C.

There are some cancellations (+) (-) for all interior ∆x,∆y paths. Therefore when we do
∮ ∮
R

,
we are left with the work terms on the boundaries ofR.

∮
C
Pdx+Qdy =

∫ ∫
R

(
∂Q

∂x
−
∂P

∂y

)
dxdy

work when we sum of all work if

move once CCW around move once CCW around all

boundary curve C (dxdy) area elements of R

inside C
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Example: 4.10

Given a 2D force field, ~F (x, y) = î(xy3) + ĵ(x2y) and a path C in the field:

Verify Green’s theorem

∮
C
Pdx+Qdy =

∫ ∫
R

(
∂Q

∂x
−
∂P

∂y

)
dxdy

with

P = xy3

Q = x2y
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